DOI QR코드

DOI QR Code

Noise Power Spectrum of Radiography Detectors: II. Measurement Based on the Spectrum Averaging

방사선 디텍터의 Noise Power Spectrum : II. Spectrum의 평균을 통한 측정

  • Received : 2016.10.17
  • Accepted : 2017.02.27
  • Published : 2017.03.25

Abstract

In order to observe the noise property of the flat-panel digital radiography detector, measuring the normalized noise power spectrum (NNPS) from acquired x-ray images is conducted. However, the conventional NNPS measurement has an unstable property depending on the acquired image. Averaging the sample periodograms of the input image is usually performed to estimate the NNPS values and increasing the number of samples can provide a reliable NNPS measurement. In this paper, for a finite number of images, two measurement methods, which are based on averaging spectra, such as the image periodogram, are proposed and their performances are analyzed. Using x-ray images acquired from two types of radiography detectors, the two spectrum averaging methods are compared and it is shown that averaging spectra based on the maximal number of combinations of the image pairs provides the best performance in measuring NNPS.

NNPS(normalized noise power spectrum)는 획득한 x선 영상에서 평판형 방사선 디텍터의 잡음 특성을 spectrum을 관찰하기 위해 측정한다. 그러나 NNPS 측정은 획득한 영상에 따라 일관적이지 못한 성질을 가지고 있어서 안정된 측정이 필요하다. 디텍터의 NNPS 측정은 표본 periodogram을 구하여 평균을 내는 방법을 사용하는데, 일반적으로 표본의 개수를 충분히 늘리면 정확하면서 안정된 값을 구할 수 있다. 본 논문에서는 periodogram과 같은 표본 spectrum의 평균으로 유한한 개수의 영상이 주어졌을 때 일관적이고 효율적인 NNPS 값을 제공 할 수 있는 두 가지 방법을 제안하고 그 성능을 비교하고 분석했다. 실제 두 종류의 방사선 디텍터로부터 획득한 x선 영상을 사용하여 제안한 방법을 실험하였으며, 주어진 영상을 사용하여 표본 spectrum의 최대 가지 수를 갖는 조합으로 NNPS를 구하고 평균을 내는 방법이 기존 방법에 비하여 안정된 NNPS 측정이 가능함을 보였다.

Keywords

References

  1. J. A. Rowlands, "The physics of computed radiography," Phys. Med. Biol., vol. 47, no. 23, pp. R123-R166, Dec. 2002. https://doi.org/10.1088/0031-9155/47/23/201
  2. D. L. Lee, L. K. Cheung, and L. S. Jeromin, "A new digital detector for projection radiography," in Proc. SPIE, Medical Imaging: Phys. Med. Imaging, vol. 2432, pp. 237-249, 1995.
  3. J. Beutel, Physics and Psychophysics: Handbook of Medical Imaging, vol. 1, 2000.
  4. J. P. Moy, "Signal-to-noise ratio and spatial resolution in x-ray electronic images: Is the MTF a relevant parameter?", Medical Physics, vol. 218, pp. 683-688, 2001.
  5. J. T. Dobbins, Ch. 3 Image Quality Metrics for Digital Systems, Handbook of Medical Imaging: Vol. 1. Physics and Psychophysics, SPIE, Washington, 2000.
  6. IEC62220-1, Characteristics of Digital X-ray Imaging Devices-Part1: Determination of the Detective Quantum Efficiency, International Electro Technical Commission Report, 2003.
  7. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ, USA: Pearson Education, 2009.
  8. D. S. Kim, "Noise power spectrum measurements in digital imaging with gain nonuniformity correction," IEEE Trans. Image Processing, vol. 25, no. 8, pp. 3712-3722, Aug. 2016. https://doi.org/10.1109/TIP.2016.2574985
  9. D. S. Kim and E. Kim, "Noise power spectrum of the fixed pattern noise in digital radiography detectors," Med. Phys., vol. 43, no. 6, pp. 2765-2773, June 2016. https://doi.org/10.1118/1.4948691
  10. D. S. Kim and E. Lee, "Noise power spectrum of radiography detectors: I. measurement using the averages of images," Jour. Inst. Electr. Inform. Eng., vol. 53, no. 12, pp. 1892-1889, 2016.

Cited by

  1. On the performance of the noise power spectrum from the gain-corrected radiography images vol.5, pp.01, 2018, https://doi.org/10.1117/1.JMI.5.1.013508