DOI QR코드

DOI QR Code

Face Recognition using Non-negative Matrix Factorization and Learning Vector Quantization

비음수 행렬 분해와 학습 벡터 양자화를 이용한 얼굴 인식

  • Jin, Donghan (Dept. of Information and Telecommunication Eng., Incheon National University) ;
  • Kang, Hyunchul (Dept. of Information and Telecommunication Eng., Incheon National University)
  • 진동한 (인천대학교 정보통신공학과) ;
  • 강현철 (인천대학교 정보통신공학과)
  • Received : 2016.11.10
  • Accepted : 2017.02.16
  • Published : 2017.03.25

Abstract

Non-negative matrix factorization (NMF) is one of the typical parts-based representation in which images are expressed as a linear combination of basis vectors that show the lcoal features or objects in the images. In this paper, we represent face images using various NMF methods and recognize their face identities based on extracted features using a learning vector quantization. We analyzed the various NMF methods by comparing extracted basis vectors. Also we confirmed the availability of NMF to the face recognition by verification of recognition rate of the various NMF methods.

비음수 행렬 분해 기법(non-negative matrix factorization)은 대표적인 부분 영역 기반 표현 기법의 하나로 영상의 부분적인 특징을 나타내는 기저 벡터의 선형 조합으로 영상을 표현하는 기법이다. 본 논문에서는 여러 가지 비음수 행렬 분해 기법을 이용하여 얼굴 영상을 표현하고, 추출된 특징을 기반으로 학습 벡터 양자화를 이용하여 얼굴 인식을 수행하였다. 추출된 각 기법의 기저 벡터를 비교하여 각 기법의 특징을 분석하였다. 또한 NMF 기법들의 인식율 검증을 통해 비음수 행렬 기법의 얼굴 인식에 대한 활용 가능성을 확인하였다.

Keywords

References

  1. A. Samil and P. Iyengar, "Automatic Recognition and Analysis of Human Face and Facial Expression: A Survey," Pattern Recognition, vol. 25, pp. 65-77, 1992. https://doi.org/10.1016/0031-3203(92)90007-6
  2. R. Chellappa, C. Wilson, and S. Sirohey, "Human and Machine Recognition of Face: A Survey," Proc. of IEEE, vol. 83, no. 5, pp. 705-740, 1995. https://doi.org/10.1109/5.381842
  3. A. Pentland, "Looking at People : Sensing for Ubiquitous and Wearable Computing," IEEE Trans. PAMI, vol. 22, no. 1, pp. 107-119, Jan. 2000. https://doi.org/10.1109/34.824823
  4. M. H. Yang, D. J. Kriegman, and N. Ahuja, "Detecting Faces in Image: A Survey," IEEE Trans. PAMI, vol. 24, no. 1, pp. 34-58, Jan. 2002. https://doi.org/10.1109/34.982883
  5. A. Pentland and M. Turk, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, vol. 3, pp. 71-86, 1993.
  6. Mika, S. et al. "Fisher Discriminant Analysis with Kernels", IEEE Conf. on Neural Networks for Signal Processing IX: 41-48, 1999.
  7. P. Comon and C. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications, Academic Press, Oxford UK, 2010.
  8. Y. C. Cho and S. Choi, "Nonnegative features of spectro-temporal sounds for classification," Pattern Recognition Letters, vol. 26, no. 9, pp. 1327-1336, 2005. https://doi.org/10.1016/j.patrec.2004.11.026
  9. Jae Min Ban, Byeong Rae Lee and Hyunchul Kang, "Moving Vehicle Recognition using NMF in Urban Scene," Journal of Korean Institute of Communication and Information Sciences, Vol. 37C, No. 7, pp.554-564, 2012. 7.
  10. Jae Min Ban and Hyunchul Kang, "Vehicle Recognition using Non-negative Tensor Factorization," Journal of the Institute of Electronics Engineers of Korea, Vol. 52, No. 5, pp.136-146, 2015. 5.
  11. S. Z. Li, X. W. Hou, H. J. Zhang and Q. S. Cheng, "Learning spatially localized part-based representation," IEEE Int. Conf. on Computer Vision Pattern Recognition, Kauai, Hawaii, pp. 207-212, 2001.
  12. D. D. Lee, H. S. Seung, "Algorithms for Non-Negative Matrix Factorization," Advances in Neural Information Processing Systems, vol. 13, pp. 556-562. 2001.
  13. Donghan Jin and Hyunchul Kang, "Face Recognition using Non-negative Matrix Factorization," Korean Institute of Information Scientists and Engineers, 2016 Workshop on Image Processing and Image Understanding, Jeju, 2016. 2
  14. D. D. Lee, H. S. Seung, "Learning the Parts of Objects by Non-Negative Matrix Factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999. https://doi.org/10.1038/44565
  15. S. Agarwal, A. Awan, Roth, "Learning to detect objects in images via a sparse, part-based representation," IEEE Trans. PAMI, vol. 26, no. 11, pp. 1475-1490, 2004. https://doi.org/10.1109/TPAMI.2004.108
  16. P. Hoyer, "Non-negative Matrix Factorization with Sparseness Constraints," Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004.
  17. C. Lin, "Projected Gradient Methods for Nonnegative Matrix Factorization," Neural Computation, vol. 19, no. 10, pp. 2756-2779, 2007. https://doi.org/10.1162/neco.2007.19.10.2756
  18. J. H, Yoo and S. J. Choi,, "Orthogonal nonnegative matrix factorization: Multiplicative updates on stiefel manifolds," In Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 140-147. 2008.
  19. C. Ding, T. Li, W. Peng, and H. Park, "Orthogonal nonnegative matrix tri-factorizations for clustering," Proc. of the ACM SIGKDD, Philadelphia, 2006.
  20. A. Edelman, T. Arias, and S. T. Smith, "The geometry of algorithms with orthogonality constraints," SIAM Journal of Matrix Analysis. Application., vol. 20, no. 2, pp. 303-353, 1998. https://doi.org/10.1137/S0895479895290954
  21. T. Kohonen, J. Hunninen, J. Kangas, J. Kaaaksonen, and K. Torkkola, "LVQ_Pak : The Learning Vector Quantization Program Package," Technical Report A30, Helsinki Univ. 1996.
  22. D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?," Advances in Neural Information Processing Systems 16, MIT Press, 2003.