DOI QR코드

DOI QR Code

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M. (King Fahd University of Petroleum and Minerals) ;
  • Rasheed, Hayder A. (Kansas State University) ;
  • Al-Rahmani, Ahmed H. (Smislova, Kehnemui & Associates)
  • Received : 2016.06.06
  • Accepted : 2016.10.31
  • Published : 2017.03.30

Abstract

The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Keywords

References

  1. Abd El Fattah, A. M. (2012). Behavior of concrete columns under various confinement effects. Ph.D. Dissertation, Kansas State University.
  2. Abd El Fattah, A. M., Rasheed, H. A., & Esmaeily, A. (2011). A new eccentricity-based simulation to generate ultimate confined interaction diagrams for circular concrete columns. Journal of the Franklin Institute-Engineering and Applied Mathematics, 348(7), 1163-1176. https://doi.org/10.1016/j.jfranklin.2009.10.005
  3. Attard, M. M., & Setunge, S. (1996). Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, 93(5), 432-442.
  4. Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 27(7), 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
  5. Bonet, J. L., Barros, F. M., & Romero, M. L. (2006). Comparative study of analytical and numerical algorithms for designing reinforced concrete section under biaxial bending. Computers & Structures, 84(31-32), 2184-2193. https://doi.org/10.1016/j.compstruc.2006.08.065
  6. Braga, F., Gigliotti, R., & Laterza, M. (2006). Analytical stressstrain relationship for concrete confined by steel stirrups and/or FRP jackets. Journal of Structural Engineering, 132(9), 1402-1416. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1402)
  7. Campione, G., & Minafo, G. (2010). Compressive behavior of short high-strength concrete columns. Engineering Structures, 32(9), 2755-2766. https://doi.org/10.1016/j.engstruct.2010.04.045
  8. Cedolin, L., Cusatis, G., Eccheli, S., & Roveda, M. (2008). Capacity of rectangular cross sections under biaxially eccentric loads. ACI Structural Journal, 105(2), 215-224.
  9. Cusson, D., & Paultre, P. (1995). Stress-strain model for confined high-strength concrete. ASCE Journal of Structural Engineering, 121(3), 468-477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
  10. Elwi, A., & Murray, D. W. (1979). A 3D hypoelastic concrete constitutive relationship. Journal of Engineering Mechanics, 105, 623-641.
  11. Fafitis, A., & Shah, S. P. (1985). Lateral reinforcement for highstrength concrete columns. ACI Special Publication, SP 87-12, pp. 213-232. Detroit, MI: American Concrete Institute.
  12. Fujii, M., Kobayashi, K., Miyagawa, T., Inoue, S., & Matsumoto, T. (1988). A study on the application of a stress-strain relation of confined concrete. In Proceedings of JCA cement and concrete (Vol. 42). Tokyo, Japan: Japan Cement Association.
  13. Hoshikuma, J., Kawashima, K., Nagaya, K., & Taylor, A. W. (1997). Stress-strain model for confined reinforced concrete in bridge piers. Journal of Structural Engineering, 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
  14. Hsu, L. S., & Hsu, C. T. T. (1994). Complete stress-strain behavior of high-strength concrete under compression. Magazine of Concrete Research, 46(169), 301-312. https://doi.org/10.1680/macr.1994.46.169.301
  15. Kaba, S. A., & Mahin, S. A. (1984). Refined modeling of reinforced concrete columns for seismic analysis. Report No. UBC/EERC-84/3. Berkeley, CA: University of California, Berkeley.
  16. Lejano, B. A. (2007). Investigation of biaxial bending of reinforced concrete columns through fiber method modeling. Journal of Research in Science, Computing, and Engineering, 4(3), 61-73.
  17. Mander, J. B. (1983). Seismic design of bridge piers. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.
  18. Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, ASCE, 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
  19. Park, R., Priestley, M. J. N., & Gill, W. D. (1982). Ductility of square confined concrete columns. Journal of Structural Division, ASCE, 108(ST4), 929-950.
  20. Paultre, P., & Legeron, F. (2008). Confinement reinforcement design for reinforced concrete columns. Journal of Structural Engineering, ASCE, 134(5), 738-749. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(738)
  21. Rasheed, H. A., & Dinno, K. S. (1994). An efficient nonlinear analysis of RC sections. Computers & Structures, 53(3), 613-623. https://doi.org/10.1016/0045-7949(94)90105-8
  22. Razvi, S., & Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering, 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  23. Richart. F. E., Brandtzaeg, A., & Brown, R. L. (1929). The failure of plain and spirally reinforced concrete in compression. Bulletin No. 190, Engineering Station. Urbana, IL: University of Illinois.
  24. Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 118(6), 1590-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)
  25. Saatcioglu, M., Salamt, A. H., & Razvi, S. R. (1995). Confined columns under eccentric loading. Journal of Structural Engineering, 121(11), 1547-1556. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1547)
  26. Samani, A. K., & Attard, M. (2012). A stress-strain model for uniaxial and confined concrete under compression. Engineering Structures, 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027
  27. Schickert, G., & Winkler, H. (1977). Results of tests concerning strength and strain of concrete subjected to multiaxial compressive stresses (p. 277). No: Deutscher Ausschuss for Stahlbeton (Berlin).
  28. Scott, B. D., Park, R., & Priestley, N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at law and high strain rates. ACI Journal, 79(1), 13-27.
  29. Sheikh, S. A., & Uzumeri, S. M. (1982). Analytical model for concrete confinement in tied columns. Journal of Structural Engineering, ASCE, 108(ST12), 2703-2722.
  30. Wee, T. H., Chin, M. S., & Mansur, M. A. (1996). Stress-strain relationship of high strength concrete in compression. Journal of Materials in Civil Engineering, 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70)
  31. Willam, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete. The International Association for Bridge and Structural Engineering, 19, 1-31.
  32. Yoo, S. H., & Shin, S. W. (2007). Variation of ultimate concrete strain at RC columns subjected to axial loads with bi-directional eccentricities. Key Engineering Materials, 348-349, 617-620. https://doi.org/10.4028/www.scientific.net/KEM.348-349.617
  33. Zahn, F., Park, R., & Priestley, M. J. N. (1989). Strength and ductility of square reinforced concrete column sections subjected to biaxial bending. ACI Structural Journal, 86(2), 123-131.

Cited by

  1. An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization vol.23, pp.1, 2017, https://doi.org/10.12989/cac.2019.23.1.025