DOI QR코드

DOI QR Code

Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites

  • Hanif, Asad (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Lu, Zeyu (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Cheng, Yu (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Diao, Su (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Li, Zongjin (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology)
  • Received : 2016.08.13
  • Accepted : 2016.11.21
  • Published : 2017.03.30

Abstract

The effects of different lightweight functional fillers on the properties of cement-based composites are investigated in this study. The fillers include fly ash cenospheres (FACs) and glass micro-spheres (GMS15 and GMS38) in various proportions. The developed composites were tested for compressive, flexural and tensile strengths at 10 and 28-day ages. The results indicated that both FACs and GMS38 are excellent candidates for producing strong lightweight composites. However, incorporation of GMS15 resulted in much lower specific strength values (only up to $13.64kPa/kg\;m^3$) due to its thinner shell thickness and lower isostatic crushing strength value (2.07 MPa). Microstructural analyses further revealed that GMS38 and GMS15 were better suited for thermal insulating applications. However, higher weight fraction of the fillers in composites leads to increased porosity which might be detrimental to their strength development.

Keywords

References

  1. Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271-295. doi:10.1007/s40069-016-0157-4.
  2. Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. ACI Journal Proceedings, 23(2), 452-457.
  3. ACI 216.1. (1997). Standard method for determining fire resistance of concrete and masonry construction assemblies.
  4. ACI 213. (2003). Guide for structural lightweight-aggregate concrete.
  5. ACI Committee 318. (2007). Building code requirements for structural concrete (ACI 318M-08) (Vol. 2007).
  6. ASTM C 1437-99. (1999). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, 1-2. doi:10.1520/C1437-13.2
  7. ASTM C230. (2003). Standard specification for flow table for use in tests of hydraulic cement. American Society for Testing and Materials. doi:10.1520/C0230
  8. ASTM D790-10. (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. American Society for Testing and Materials. doi:10.1520/D0790-10
  9. Bouvard, D., Chaix, J. M., Dendievel, R., Fazekas, A., Letang, J. M., Peix, G., et al. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete. Cement and Concrete Research, 37(12), 1666-1673. doi:10.1016/j.cemconres.2007.08.028.
  10. Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete: Science, technology, and applications. Norwich, NY: Noyes Publications/William Andrew Publishing.
  11. Chavez-Valdez, A., Arizmendi-Morquecho, A., Vargas, G., Almanza, J. M., & Alvarez-Quintana, J. (2011). Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Materialia, 59(6), 2556-2562. doi:10.1016/j.actamat.2011.01.011.
  12. Chen, B., & Liu, N. (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials, 44(2013), 691-698. doi:10.1016/j.conbuildmat.2013.03.091.
  13. de Gennaro, R., Langella, A., D'Amore, M., Dondi, M., Colella, A., Cappelletti, P., et al. (2008). Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Applied Clay Science, 41(1-2), 61-72. doi:10.1016/j.clay.2007.09.008.
  14. emirboga, R., Orung, I., & Gu l, R. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research, 31(11), 1627-1632. doi:10.1016/S0008-8846(01)00615-9.
  15. Ducman, V., & Mladenovic, A. (2004). Alkali-silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 34(2004), 1809-1816. doi:10.1016/j.cemconres.2004.01.017.
  16. 3M Energy and Advanced Materials Division. 3M TM glass microspheres compounding and injection molding guidelines (2007). http://multimedia.3m.com/mws/media/426234O/3mtm-glass-microspheres-compounding-and-injmolding-guide.pdf
  17. Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52(2014), 130-136. doi:10.1016/j.conbuildmat.2013.10.100.
  18. Hanif, A., Diao, S., Lu, Z., Fan, T., & Li, Z. (2016). Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres-Mechanical and thermal insulating properties. Construction and Building Materials, 116, 422-430. doi:10.1016/j.conbuildmat.2016.04.134.
  19. Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement-A review. Construction and Building Materials, 37, 452-461. doi:10.1016/j.conbuildmat.2012.07.071.
  20. Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34(11), 8179-8181. doi:10.1103/PhysRevB.34.8179.
  21. Ke, Y., Beaucour, A. L., Ortola, S., Dumontet, H., & Cabrillac, R. (2009). Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Construction and Building Materials, 23(8), 2821-2828. doi:10.1016/j.conbuildmat.2009.02.038.
  22. Kim, S., Seo, J., Cha, J., & Kim, S. (2013). Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials, 40, 501-505. doi:10.1016/j.conbuildmat.2012.11.046.
  23. Kramar, D., & Bindiganavile, V. (2010). Mechanical properties and size effects in lightweight mortars containing expanded perlite aggregate. Materials and Structures, 44(4), 735-748. doi:10.1617/s11527-010-9662-0.
  24. Kramar, D., & Bindiganavile, V. (2013). Impact response of lightweight mortars containing expanded perlite. Cement & Concrete Composites, 37(2013), 205-214. doi:10.1016/j.cemconcomp.2012.10.004.
  25. Kwan, A. K. H., & Chen, J. J. (2013). Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology, 234(2013), 19-25. doi:10.1016/j.powtec.2012.09.016.
  26. Lanzon, M., & Garcia-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806. doi:10.1016/j.conbuildmat.2007.05.006.
  27. Li,Z. (2011). Advanced concrete technology.NewYork,NY:Wiley.
  28. Lotfy, A., Hossain, K. M. A., & Lachemi, M. (2015). Lightweight self-consolidating concrete with expanded shale aggregates: Modelling and optimization. International Journal of Concrete Structures and Materials, 9(2), 185-206. doi:10.1007/s40069-015-0096-5.
  29. Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall Ltd. doi:10.1007/978-94-015-7955-1.
  30. Lu, Z., Xu, B., Zhang, J., Zhu, Y., Sun, G., & Li, Z. (2014). Preparation and characterization of expanded perlite/ paraffin composite as form-stable phase change material. Solar Energy, 108, 460-466. doi:10.1016/j.solener.2014.08.008.
  31. Ma, H. (2014). Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 21(2), 207-215. doi:10.1007/s10934-013-9765-4.
  32. Ma, H., Hou, D., Liu, J., & Li, Z. (2014). Estimate the relative electrical conductivity of C-S-H gel from experimental results. Construction and Building Materials, 71, 392-396. doi:10.1016/j.conbuildmat.2014.08.036.
  33. Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computers & Concrete, 11(4), 317-336. doi:10.12989/cac.2013.11.4.317.
  34. Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials, 7(3), 239-249. doi:10.1007/s40069-013-0049-9.
  35. Miled, K., Sab, K., & Le Roy, R. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials, 39(3), 222-240. doi:10.1016/j.mechmat.2006.05.008.
  36. Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., & Wallevik, O. H. (2015). Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials, 77, 307-316. doi:10.1016/j.conbuildmat.2014.12.064.
  37. Palik, E. S. (1977). Specific surface area measurements on ceramic powders. Powder Technology, 18, 45-48. https://doi.org/10.1016/0032-5910(77)85006-7
  38. Pereira, C. J., Rice, R. W., & Skalny, J. P. (1989). Pore structure and its relationship to properties of materials. In L. R. Roberts & J. P. Skalny (Eds.), Materials research society symposium proceedings (Vol. 137, pp. 3-21). Pittsbutrgh, PA: Materials Research Society.
  39. Pichor, W. (2009). Properties of fiber reinforced cement composites with cenospheres from coal ash. Brittle Matrix Composites, 9, 245. doi:10.1533/9781845697754.245.
  40. Rashad, A. M., Seleem, H. E. D. H., & Shaheen, A. F. (2014). Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials, 8(1), 69-81. doi:10.1007/s40069-013-0051-2.
  41. Rice, R. W. (1998). Porosity of ceramics: Properties and applications. Boca Raton, FL: CRC Press.
  42. Saradhi Babu, D., Ganesh Babu, K., & Wee, T. H. (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cement and Concrete Research, 35(6), 1218-1223. doi:10.1016/j.cemconres.2004.11.015.
  43. Sharifi, Y., Afshoon, I., Firoozjaei, Z., & Momeni, A. (2016). Utilization of waste glass micro-particles in producing selfconsolidating concrete mixtures. International Journal of Concrete Structures and Materials. doi:10.1007/s40069-016-0141-z.
  44. Spiesz, P., Yu, Q. L., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites-Part 2: Durability-related properties. Cement & Concrete Composites, 44(2013), 30-40. doi:10.1016/j.cemconcomp.2013.03.029.
  45. Topcu, I. B., & Isikdag, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1-3), 34-38. doi:10.1016/j.jmatprotec.2007.10.052.
  46. Wang, J.-Y., Chia, K.-S., Liew, J.-Y. R., & Zhang, M.-H. (2013). Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement & Concrete Composites, 43, 39-47. doi:10.1016/j.cemconcomp.2013.06.006.
  47. Wang, J. Y., Yang, Y., Liew, J. Y. R., & Zhang, M. H. (2014). Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cement & Concrete Composites, 53, 178-186. doi:10.1016/j.cemconcomp.2014.07.006.
  48. Wang, J. Y., Zhang, M. H., Li, W., Chia, K. S., & Liew, R. J. Y. (2012). Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction. Cement and Concrete Research, 42(5), 721-727. doi:10.1016/j.cemconres.2012.02.010.
  49. Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 7(4), 115-116. doi:10.1073/pnas.7.4.115.
  50. Woignier, T., & Phalippou, J. (1988). Mechanical strength of silica aerogels. Journal of Non-Crystalline Solids, 100(1-3), 404-408. doi:10.1016/0022-3093(88)90054-3.
  51. Wu, Y., Wang, J.-Y., Monteiro, P. J. M., & Zhang, M.-H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100-112. doi:10.1016/j.conbuildmat.2015.04.004.
  52. Xu, B., Ma, H., & Hu, C. (2015). Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Materials and Structures. doi:10.1617/s11527-015-0578-6.
  53. Yu, Q. L., Spiesz, P., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites-Part 1: Mix design methodology and hardened properties. Cement & Concrete Composites, 44(2013), 17-29. doi:10.1016/j.cemconcomp.2013.03.030.

Cited by

  1. Comparative study of the mechanical and thermal properties of lightweight cementitious composites vol.159, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2017.10.102
  2. A Novel, Multifunctional, Floatable, Lightweight Cement Composite: Development and Properties vol.11, pp.10, 2017, https://doi.org/10.3390/ma11102043
  3. Incorporating Liquid Crystal Display (LCD) Glass Waste as Supplementary Cementing Material (SCM) in Cement Mortars—Rationale Based on Hydration, Durability, and Pore Characteristics vol.11, pp.12, 2017, https://doi.org/10.3390/ma11122538
  4. Role of recycling fine materials as filler for improving performance of concrete - a review vol.17, pp.2, 2017, https://doi.org/10.1080/14488353.2019.1626692
  5. Self-Consolidating Lightweight Concrete Incorporating Limestone Powder and Fly Ash as Supplementary Cementing Material vol.12, pp.18, 2017, https://doi.org/10.3390/ma12183050
  6. Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas vol.22, pp.None, 2017, https://doi.org/10.21501/21454086.3283
  7. Predicting effective thermal and elastic properties of cementitious composites containing polydispersed hollow and core-shell micro-particles vol.105, pp.None, 2017, https://doi.org/10.1016/j.cemconcomp.2019.103439
  8. Shrinkage and Strength Properties of Coal Gangue Ceramsite Lightweight Aggregate Concrete vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3575709
  9. Utilization of Fly Ash Cenosphere for Production of Sustainable Lightweight Concrete vol.101, pp.1, 2020, https://doi.org/10.1007/s40030-019-00415-6
  10. Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers vol.246, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118410
  11. Influence of flexural loading and chloride exposure on the fatigue behavior of high-performance lightweight engineered cementitious composites vol.249, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118512
  12. Interfacial characteristics of cement mortars containing aggregate derived from industrial slag waste vol.5, pp.4, 2017, https://doi.org/10.1080/24705314.2020.1783124
  13. Strength and hydration attributes of cement pastes containing nano titania and cenosphere vol.32, pp.12, 2020, https://doi.org/10.1680/jadcr.19.00015
  14. Comparative Study of Lightweight Cementitious Composite Reinforced with Different Fibre Types and the Effect of Silane-Based Admixture vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/2190813
  15. Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites vol.5, pp.4, 2017, https://doi.org/10.3390/jcs5040113