References
- Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271-295. doi:10.1007/s40069-016-0157-4.
- Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. ACI Journal Proceedings, 23(2), 452-457.
- ACI 216.1. (1997). Standard method for determining fire resistance of concrete and masonry construction assemblies.
- ACI 213. (2003). Guide for structural lightweight-aggregate concrete.
- ACI Committee 318. (2007). Building code requirements for structural concrete (ACI 318M-08) (Vol. 2007).
- ASTM C 1437-99. (1999). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, 1-2. doi:10.1520/C1437-13.2
- ASTM C230. (2003). Standard specification for flow table for use in tests of hydraulic cement. American Society for Testing and Materials. doi:10.1520/C0230
- ASTM D790-10. (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. American Society for Testing and Materials. doi:10.1520/D0790-10
- Bouvard, D., Chaix, J. M., Dendievel, R., Fazekas, A., Letang, J. M., Peix, G., et al. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete. Cement and Concrete Research, 37(12), 1666-1673. doi:10.1016/j.cemconres.2007.08.028.
- Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete: Science, technology, and applications. Norwich, NY: Noyes Publications/William Andrew Publishing.
- Chavez-Valdez, A., Arizmendi-Morquecho, A., Vargas, G., Almanza, J. M., & Alvarez-Quintana, J. (2011). Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Materialia, 59(6), 2556-2562. doi:10.1016/j.actamat.2011.01.011.
- Chen, B., & Liu, N. (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials, 44(2013), 691-698. doi:10.1016/j.conbuildmat.2013.03.091.
- de Gennaro, R., Langella, A., D'Amore, M., Dondi, M., Colella, A., Cappelletti, P., et al. (2008). Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Applied Clay Science, 41(1-2), 61-72. doi:10.1016/j.clay.2007.09.008.
- emirboga, R., Orung, I., & Gu l, R. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research, 31(11), 1627-1632. doi:10.1016/S0008-8846(01)00615-9.
- Ducman, V., & Mladenovic, A. (2004). Alkali-silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 34(2004), 1809-1816. doi:10.1016/j.cemconres.2004.01.017.
- 3M Energy and Advanced Materials Division. 3M TM glass microspheres compounding and injection molding guidelines (2007). http://multimedia.3m.com/mws/media/426234O/3mtm-glass-microspheres-compounding-and-injmolding-guide.pdf
- Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52(2014), 130-136. doi:10.1016/j.conbuildmat.2013.10.100.
- Hanif, A., Diao, S., Lu, Z., Fan, T., & Li, Z. (2016). Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres-Mechanical and thermal insulating properties. Construction and Building Materials, 116, 422-430. doi:10.1016/j.conbuildmat.2016.04.134.
- Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement-A review. Construction and Building Materials, 37, 452-461. doi:10.1016/j.conbuildmat.2012.07.071.
- Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34(11), 8179-8181. doi:10.1103/PhysRevB.34.8179.
- Ke, Y., Beaucour, A. L., Ortola, S., Dumontet, H., & Cabrillac, R. (2009). Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Construction and Building Materials, 23(8), 2821-2828. doi:10.1016/j.conbuildmat.2009.02.038.
- Kim, S., Seo, J., Cha, J., & Kim, S. (2013). Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials, 40, 501-505. doi:10.1016/j.conbuildmat.2012.11.046.
- Kramar, D., & Bindiganavile, V. (2010). Mechanical properties and size effects in lightweight mortars containing expanded perlite aggregate. Materials and Structures, 44(4), 735-748. doi:10.1617/s11527-010-9662-0.
- Kramar, D., & Bindiganavile, V. (2013). Impact response of lightweight mortars containing expanded perlite. Cement & Concrete Composites, 37(2013), 205-214. doi:10.1016/j.cemconcomp.2012.10.004.
- Kwan, A. K. H., & Chen, J. J. (2013). Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology, 234(2013), 19-25. doi:10.1016/j.powtec.2012.09.016.
- Lanzon, M., & Garcia-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806. doi:10.1016/j.conbuildmat.2007.05.006.
- Li,Z. (2011). Advanced concrete technology.NewYork,NY:Wiley.
- Lotfy, A., Hossain, K. M. A., & Lachemi, M. (2015). Lightweight self-consolidating concrete with expanded shale aggregates: Modelling and optimization. International Journal of Concrete Structures and Materials, 9(2), 185-206. doi:10.1007/s40069-015-0096-5.
- Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall Ltd. doi:10.1007/978-94-015-7955-1.
- Lu, Z., Xu, B., Zhang, J., Zhu, Y., Sun, G., & Li, Z. (2014). Preparation and characterization of expanded perlite/ paraffin composite as form-stable phase change material. Solar Energy, 108, 460-466. doi:10.1016/j.solener.2014.08.008.
- Ma, H. (2014). Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 21(2), 207-215. doi:10.1007/s10934-013-9765-4.
- Ma, H., Hou, D., Liu, J., & Li, Z. (2014). Estimate the relative electrical conductivity of C-S-H gel from experimental results. Construction and Building Materials, 71, 392-396. doi:10.1016/j.conbuildmat.2014.08.036.
- Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computers & Concrete, 11(4), 317-336. doi:10.12989/cac.2013.11.4.317.
- Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials, 7(3), 239-249. doi:10.1007/s40069-013-0049-9.
- Miled, K., Sab, K., & Le Roy, R. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials, 39(3), 222-240. doi:10.1016/j.mechmat.2006.05.008.
- Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., & Wallevik, O. H. (2015). Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials, 77, 307-316. doi:10.1016/j.conbuildmat.2014.12.064.
- Palik, E. S. (1977). Specific surface area measurements on ceramic powders. Powder Technology, 18, 45-48. https://doi.org/10.1016/0032-5910(77)85006-7
- Pereira, C. J., Rice, R. W., & Skalny, J. P. (1989). Pore structure and its relationship to properties of materials. In L. R. Roberts & J. P. Skalny (Eds.), Materials research society symposium proceedings (Vol. 137, pp. 3-21). Pittsbutrgh, PA: Materials Research Society.
- Pichor, W. (2009). Properties of fiber reinforced cement composites with cenospheres from coal ash. Brittle Matrix Composites, 9, 245. doi:10.1533/9781845697754.245.
- Rashad, A. M., Seleem, H. E. D. H., & Shaheen, A. F. (2014). Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials, 8(1), 69-81. doi:10.1007/s40069-013-0051-2.
- Rice, R. W. (1998). Porosity of ceramics: Properties and applications. Boca Raton, FL: CRC Press.
- Saradhi Babu, D., Ganesh Babu, K., & Wee, T. H. (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cement and Concrete Research, 35(6), 1218-1223. doi:10.1016/j.cemconres.2004.11.015.
- Sharifi, Y., Afshoon, I., Firoozjaei, Z., & Momeni, A. (2016). Utilization of waste glass micro-particles in producing selfconsolidating concrete mixtures. International Journal of Concrete Structures and Materials. doi:10.1007/s40069-016-0141-z.
- Spiesz, P., Yu, Q. L., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites-Part 2: Durability-related properties. Cement & Concrete Composites, 44(2013), 30-40. doi:10.1016/j.cemconcomp.2013.03.029.
- Topcu, I. B., & Isikdag, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1-3), 34-38. doi:10.1016/j.jmatprotec.2007.10.052.
- Wang, J.-Y., Chia, K.-S., Liew, J.-Y. R., & Zhang, M.-H. (2013). Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement & Concrete Composites, 43, 39-47. doi:10.1016/j.cemconcomp.2013.06.006.
- Wang, J. Y., Yang, Y., Liew, J. Y. R., & Zhang, M. H. (2014). Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cement & Concrete Composites, 53, 178-186. doi:10.1016/j.cemconcomp.2014.07.006.
- Wang, J. Y., Zhang, M. H., Li, W., Chia, K. S., & Liew, R. J. Y. (2012). Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction. Cement and Concrete Research, 42(5), 721-727. doi:10.1016/j.cemconres.2012.02.010.
- Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 7(4), 115-116. doi:10.1073/pnas.7.4.115.
- Woignier, T., & Phalippou, J. (1988). Mechanical strength of silica aerogels. Journal of Non-Crystalline Solids, 100(1-3), 404-408. doi:10.1016/0022-3093(88)90054-3.
- Wu, Y., Wang, J.-Y., Monteiro, P. J. M., & Zhang, M.-H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100-112. doi:10.1016/j.conbuildmat.2015.04.004.
- Xu, B., Ma, H., & Hu, C. (2015). Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Materials and Structures. doi:10.1617/s11527-015-0578-6.
- Yu, Q. L., Spiesz, P., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites-Part 1: Mix design methodology and hardened properties. Cement & Concrete Composites, 44(2013), 17-29. doi:10.1016/j.cemconcomp.2013.03.030.
Cited by
- Comparative study of the mechanical and thermal properties of lightweight cementitious composites vol.159, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2017.10.102
- A Novel, Multifunctional, Floatable, Lightweight Cement Composite: Development and Properties vol.11, pp.10, 2017, https://doi.org/10.3390/ma11102043
- Incorporating Liquid Crystal Display (LCD) Glass Waste as Supplementary Cementing Material (SCM) in Cement Mortars—Rationale Based on Hydration, Durability, and Pore Characteristics vol.11, pp.12, 2017, https://doi.org/10.3390/ma11122538
- Role of recycling fine materials as filler for improving performance of concrete - a review vol.17, pp.2, 2017, https://doi.org/10.1080/14488353.2019.1626692
- Self-Consolidating Lightweight Concrete Incorporating Limestone Powder and Fly Ash as Supplementary Cementing Material vol.12, pp.18, 2017, https://doi.org/10.3390/ma12183050
- Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas vol.22, pp.None, 2017, https://doi.org/10.21501/21454086.3283
- Predicting effective thermal and elastic properties of cementitious composites containing polydispersed hollow and core-shell micro-particles vol.105, pp.None, 2017, https://doi.org/10.1016/j.cemconcomp.2019.103439
- Shrinkage and Strength Properties of Coal Gangue Ceramsite Lightweight Aggregate Concrete vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3575709
- Utilization of Fly Ash Cenosphere for Production of Sustainable Lightweight Concrete vol.101, pp.1, 2020, https://doi.org/10.1007/s40030-019-00415-6
- Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers vol.246, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118410
- Influence of flexural loading and chloride exposure on the fatigue behavior of high-performance lightweight engineered cementitious composites vol.249, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118512
- Interfacial characteristics of cement mortars containing aggregate derived from industrial slag waste vol.5, pp.4, 2017, https://doi.org/10.1080/24705314.2020.1783124
- Strength and hydration attributes of cement pastes containing nano titania and cenosphere vol.32, pp.12, 2020, https://doi.org/10.1680/jadcr.19.00015
- Comparative Study of Lightweight Cementitious Composite Reinforced with Different Fibre Types and the Effect of Silane-Based Admixture vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/2190813
- Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites vol.5, pp.4, 2017, https://doi.org/10.3390/jcs5040113