참고문헌
- Ahmed, S. F. U., Maalej, M., & Paramasivam, P. (2007). Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash. Construction and Building Materials, 21, 1088-1097. https://doi.org/10.1016/j.conbuildmat.2006.01.002
- ASTM C150/C150M. (2016). Standard specification for Portland cement. West Conshohocken, PA: ASTM International.
- ASTM C39/C39M. (2015). Standard test method for compressive strength of cylindrical concrete specimen. West Conshohocken, PA: ASTM International.
- ASTM C469/C469M. (2014). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression.West Conshohocken, PA:ASTMInternational.
- ASTM C618. (2015). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Conshohocken, PA: ASTM International.
- Atis, C. D., & Karahan, O. (2009). Properties of steel fiber reinforced fly ash concrete. Construction and Building Materials, 23, 392-399. https://doi.org/10.1016/j.conbuildmat.2007.11.002
- Coughlin, A. M., Musselman, E. S., Schokker, A. J., & Linzell, D. G. (2010). Behavior of portable fiber reinforced concrete vehicle barriers subject to blasts from contact charges. International Journal of Impact Engineering, 37, 521-529. https://doi.org/10.1016/j.ijimpeng.2009.11.004
- Ha, J. H., Yi, N. H., Choi, J. K., & Kim, J. H. J. (2011). Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading. Composite Structures, 93, 2070-2082. https://doi.org/10.1016/j.compstruct.2011.02.014
- Habel, K., & Gauvreau, P. (2008). Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cement & Concrete Composites, 30, 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001
- Hanhwa Corporation/Explosive. Explosives Products. Available online: http://www.hanwhacorp.co.kr/explosives/business/area2_1.jsp. Accessed on 14 Oct 2016. (In Korean).
- Islam, A. K. M. A., & Yazdani, N. (2008). Performance of AASHTO girder bridges under blast loadings. Engineering Structures, 30(7), 1922-1937. https://doi.org/10.1016/j.engstruct.2007.12.014
- Kim, H., Kim, G., Gucunski, N., Nam, J., & Jeon, J. (2015a). Assessment of flexural toughness and impact resistance of bundle-type polyamide fiber-reinforced concrete. Composites Part B Engineering, 78, 431-446. https://doi.org/10.1016/j.compositesb.2015.04.011
- Kim, H., Kim, G., Nam, J., Kim, J., Han, S., & Lee, S. (2015b). Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete. Composite Structures, 134, 831-844. https://doi.org/10.1016/j.compstruct.2015.08.128
- Lan, S., Lok, T. S., & Heng, L. (2005). Composite structural panels subjected to explosive loading. Construction and Building Materials, 19, 387-395. https://doi.org/10.1016/j.conbuildmat.2004.07.021
- Lawler, J. S., Wilhelm, T., Zampini, D., & Shah, S. P. (2003). Fracture process of hybrid fiber reinforced mortar. Materials and Structures, 36, 197-208. https://doi.org/10.1007/BF02479558
- Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. https://doi.org/10.1007/s40069-014-0068-1
- Leppanen, J. (2006). Concrete subjected to projectile and fragment impacts: Modelling of crack softening and strain rate dependency in tension. International Journal of Impact Engineering, 32, 1828-1841. https://doi.org/10.1016/j.ijimpeng.2005.06.005
- Li, V., & Stang, H. (1997). Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites. Advanced Cement Based Materials, 6(1), 1-20. https://doi.org/10.1016/S1065-7355(97)90001-8
- Li, J., Wu, C., Hao, H., Su, Y., & Liu, Z. (2016a). Blast resistance of concrete slab reinforced with high performance fibre material. Journal of Structural Integrity and Maintenance, 1(2), 51-59. https://doi.org/10.1080/24705314.2016.1179496
- Li, J., Wu, C., Hao, H., Wang, Z., & Su, Y. (2016b). Experimental investigation of ultra-high performance concrete slabs under contact explosions. International Journal of Impact Engineering, 93, 62-75. https://doi.org/10.1016/j.ijimpeng.2016.02.007
- Luccioni, B. M., Ambrosini, R. D., & Danesi, R. F. (2004). Analysis of building collapse under blast loads. Engineering Structures, 26(1), 63-71. https://doi.org/10.1016/j.engstruct.2003.08.011
- Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. (2013). Self-consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International Journal of Concrete Structures and Materials, 7(2), 155-163. https://doi.org/10.1007/s40069-013-0044-1
- McVay, M. K. (1988). Spall damage of concrete structures. U.S. Army Corps of Engineers Waterways Experimental Station, Technical report SL88-22.
- Mechtcherine, V., Millon, O., Butler, M., & Thoma, K. (2011). Mechanical behaviour of strain hardening cement-based composites under impact loading. Cement & Concrete Composites, 33, 1-11. https://doi.org/10.1016/j.cemconcomp.2010.09.018
- Mindess, S., Banthia, N., & Yan, C. (1987). The fracture toughness of concrete under impact loading. Cement and Concrete Research, 17(2), 231-241. https://doi.org/10.1016/0008-8846(87)90106-2
- Morishita, M., Tanaka, H., Ando, T., & Hagiya, H. (2004). Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations. Concrete Research and Technology, 15(2), 89-98. (in Japanese). https://doi.org/10.3151/crt1990.15.2_89
- Morishita, M., Tanaka, H., Itoh, T., & Yamaguchi, H. (2000). Damage of reinforced concrete slabs subjected to contact detonations. Journal of Structural Engineering, 46A, 1787-1797. (in Japanese).
- Mosalam, K. M., & Mosallam, A. S. (2001). Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites. Composites Part B Engineering, 32, 623-636. https://doi.org/10.1016/S1359-8368(01)00044-0
- Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 1(3), 241-252. https://doi.org/10.3151/jact.1.241
- Nam, J. W., Kim, H. J., Kim, S. B., Yi, N. H., & Kim, J. H. J. (2010). Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure. Composite Structures, 92, 1212-1222. https://doi.org/10.1016/j.compstruct.2009.10.031
- Nam, J. S., Kim, G. Y., Miyauchi, H., Jeon, Y. S., & Hwang, H. K. (2011). Evaluation on the blast resistance of fiber reinforced concrete. Advanced Materials Research, 311-313, 1588-1593. https://doi.org/10.4028/www.scientific.net/AMR.311-313.1588
- Nam, J., Shinohara, Y., Atou, T., Kim, H., & Kim, G. (2016). Comparative assessment of failure characteristics on fiberreinforced cementitious composite panels under high-velocity impact. Composites Part B Engineering, 99, 84-97. https://doi.org/10.1016/j.compositesb.2016.06.008
- Ohkubo, K., Beppu, M., Ohno, T., & Satoh, K. (2008). Experimental study on the effectiveness of fiber sheet reinforcement on the explosive-resistant performance of concrete plates. International Journal of Impact Engineering, 35, 1702-1708. https://doi.org/10.1016/j.ijimpeng.2008.07.022
- Ohtsu, M., Uddin, F. A. K. M., Tong, W., & Murakami, K. (2007). Dynamics of spall failure in fiber reinforced concrete due to blasting. Construction and Building Materials, 21, 511-518. https://doi.org/10.1016/j.conbuildmat.2006.04.007
- Osteraas, J. D. (2006). Murrah building bombing revisited: a qualitative assessment of blast damage and collapse patterns. Journal of Performance of Constructed Facilities, 20(4), 330-335. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(330)
- Razaqpur, A. G., Tolba, A., & Contestabile, E. (2007). Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates. Composites Part B Engineering, 38, 535-546.
- RILEM 50-FMC Draft Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 285-290. https://doi.org/10.1007/BF02472917
- Shu, X., Graham, R. K., Huang, B., & Burdette, E. G. (2015). Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar. Materials and Design, 65, 1222-1228. https://doi.org/10.1016/j.matdes.2014.10.015
- Silva, P. F., & Lu, B. (2007). Improving the blast resistance capacity of RC slabs with innovative composite materials. Composites Part B Engineering, 38, 523-534. https://doi.org/10.1016/j.compositesb.2006.06.015
- Silva, P. F., & Lu, B. (2009). Blast resistance capacity of reinforced concrete slabs. Journal of Structural Engineering, 135, 708-716. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000011
- Soe, K. T., Zhang, Y. X., & Zhang, L. C. (2013). Impact resistance of hybrid-fiber engineered cementitious composite panels. Composite Structures, 104, 320-330. https://doi.org/10.1016/j.compstruct.2013.01.029
- Tanaka, H., & Tuji, M. (2003). Effects of reinforcing on damage of reinforced concrete slabs subjected to explosive loading. Concrete Research and Technology, 14(1), 1-11. (in Japanese). https://doi.org/10.3151/crt1990.14.1_1
- van Doormaal, J. C. A. M., Weerheijm, J., & Sluys, L. J. (1994). Experimental and numerical determination of the dynamic fracture energy of concrete. Journal de Physique IV, 4(C8), 501-506.
- Wang, W., Zhang, D., Lu, F., Wang, S. C., & Tang, F. (2013). Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under closein explosion. Engineering Failure Analysis, 27, 41-51. https://doi.org/10.1016/j.engfailanal.2012.07.010
- Wu, C., Nurwidayati, R., & Oehlers, D. J. (2009a). Fragmentation from spallation of RC slabs due to airblast loads. International Journal of Impact Engineering, 36, 1371-1376. https://doi.org/10.1016/j.ijimpeng.2009.03.014
- Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., & Whittaker, A. S. (2009b). Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs. Engineering Structures, 31, 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020
- Xie, W., Jiang, M., Chen, H., Zhou, J., Xu, Y., Wang, P., et al. (2014). Experimental behaviors of CFRP cloth strengthened buried arch structure subjected to subsurface localized explosion. Composite Structures, 116, 562-570. https://doi.org/10.1016/j.compstruct.2014.05.045
- Yamaguchi, M., Murakami, K., Takeda, K., & Mitsui, Y. (2011). Blast resistance of polyethylene fiber reinforced concrete to contact detonation. Journal of Advanced Concrete Technology, 9(1), 63-71. https://doi.org/10.3151/jact.9.63
- Yang, E. H., Yang, Y., & Li, V. C. (2007). Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Materials Journal, 104(6), 620-628.
- Yoo, D. Y., Banthia, N., Kim, S. W., & Yoon, Y. S. (2015). Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to lowvelocity impact loading.Composite Structures, 126, 233-245. https://doi.org/10.1016/j.compstruct.2015.02.058
- Yoo, D. Y., & Yoon, Y. S. (2016). A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 10(2), 125-142. https://doi.org/10.1007/s40069-016-0143-x
- Zhang, X. X., Ruiz, G., Yu, R. C., & Tarifa, M. (2009). Fracture behaviour of high-strength concrete at a wide range of loading rates. International Journal of Impact Engineering, 36, 1204-1209. https://doi.org/10.1016/j.ijimpeng.2009.04.007
피인용 문헌
- 후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동 vol.21, pp.6, 2017, https://doi.org/10.11112/jksmi.2017.21.6.098
- Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact vol.11, pp.3, 2018, https://doi.org/10.3390/ma11030409
- Influence of critical parameters on UHPFRC structural elements subjected to blast loading vol.2, pp.3, 2017, https://doi.org/10.1007/s42452-020-2259-5
- 후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성 vol.25, pp.3, 2017, https://doi.org/10.11112/jksmi.2021.25.3.31
- Effect of Fiber Blending Ratio on the Tensile Properties of Steel Fiber Hybrid Reinforced Cementitious Composites under Different Strain Rates vol.14, pp.16, 2021, https://doi.org/10.3390/ma14164504
- Experimental and numerical investigations on ultra-high toughness cementitious composite slabs subjected to close-in blast loadings vol.126, pp.None, 2017, https://doi.org/10.1016/j.cemconcomp.2021.104339