DOI QR코드

DOI QR Code

Adaptive Air-Particle Method for Vortex Effects of Water in Free Surface

자유표면내 물의 와류효과를 위한 적응적 공기 입자 기법

  • Received : 2016.11.24
  • Accepted : 2017.03.07
  • Published : 2017.03.07

Abstract

We propose an efficient method to express water spray effects by adaptively modeling air particles in particle-based water simulation. In real world, water and air continuously interacts with each other around free surfaces and this phenomenon is commonly observed in waterfall or sea with rough waves. Due to thin spray water, the interfaces between water and air become vague and the interactions between them lead to heavy vortex phenomenon. To express this phenomenon, we propose methods of 1) generating adaptive air cell in particle-based water simulation, 2) expressing water spray effects by creating and evolving air particles in the adaptive air cells, and 3) guaranteeing robustness of simulation by solving drifting problem occurred when adjacent air particles are insufficient. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results.

미시적인 관점에서 물표면 주위에 위치한 물 입자와 공기 입자는 끊임없이 서로 상호작용을 한다. 이러한 상호작용은 대량의 작은 물 입자들이 엷게 흩날리는 상황이 표현되는 폭포나 바다에서 명확하게 나타난다. 즉, 엷게 퍼진 작은 물 입자들로 인해 물과 공기사이의 표면경계가 불분명해지며 이 부분에서 공기와 물 입자간의 상호작용으로 인해 급격한 와류현상이 나타나게 된다. 그러나 기존 입자 기반 물 시뮬레이션에서는 유동에 의해 나타나는 자기와류 (self-trubulent)에만 집중하였고, 자유표면 근처에서 공기에 의해 표현되는 부차적인 와류 현상에 대해서는 고려하지 못했다. 유체표면의 움직임에 집중된 모델링으로 인해 대량의 작은 물 입자들이 엷게 흩날리는 장면을 사실적으로 연출하기에는 한계가 있다. 우리는 1) 물 표면에서 공기의 역할을 담당하는 공기 입자 층을 적응적으로 생성하고, 2) 물과 공기를 서로 다른 상 (phase)으로 모델링하여 자유표면 근처에서 발생하는 와류를 사실적으로 표현하는 기법을 제안한다. 결과적으로, 우리는 공기에 의해 표현되는 와류를 입자기반 프레임워크에서 효율적으로 다루어 계산속도 및 결과측면에서 기존기법보다 개선된 결과를 얻었다.

Keywords

Acknowledgement

Supported by : Hallym University, Institute for Information & communications Technology Promotion(IITP), National Research Foundation of Korea (NRF)

References

  1. R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics: theory and application to non-spherical stars," Monthly notices of the royal astronomical society, vol. 181, no. 3, pp. 375-389, 1977. https://doi.org/10.1093/mnras/181.3.375
  2. J. J. Monaghan, "Simulating free surface flows with sph," Journal of computational physics, vol. 110, no. 2, pp. 399-406, 1994. https://doi.org/10.1006/jcph.1994.1034
  3. M. Desbrun and M.-P. Gascuel, Smoothed particles: A new paradigm for animating highly deformable bodies. Springer, 1996.
  4. M. Muller, D. Charypar, and M. Gross, "Particle-based fluid simulation for interactive applications," in ACM SIGGRAPH/Eurographics Symposium on Computer animation, 2003, pp. 154-159.
  5. T. Yang, J. Chang, B. Ren, M. C. Lin, J. J. Zhang, and S.-M. Hu, "Fast multiple-fluid simulation using helmholtz free energy," ACM Transactions on Graphics, vol. 34, no. 6, p. 201, 2015.
  6. F. Ott and E. Schnetter, "A modified sph approach for fluids with large density differences," arXiv preprint physics/0303112, 2003.
  7. A. M. Tartakovsky and P. Meakin, "A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional rayleigh-taylor instability," Journal of Computational Physics, vol. 207, no. 2, pp. 610-624, 2005. https://doi.org/10.1016/j.jcp.2005.02.001
  8. X. Y. Hu and N. A. Adams, "A multi-phase sph method for macroscopic and mesoscopic flows," Journal of Computational Physics, vol. 213, no. 2, pp. 844-861, 2006. https://doi.org/10.1016/j.jcp.2005.09.001
  9. H. Schechter and R. Bridson, "Ghost sph for animating water," ACM Transactions on Graphics, vol. 31, no. 4, p. 61, 2012.
  10. X. He, H. Wang, F. Zhang, H. Wang, G. Wang, and K. Zhou, "Robust simulation of sparsely sampled thin features in sphbased free surface flows," ACM Transactions on Graphics, vol. 34, no. 1, p. 7, 2014.
  11. M. Muller, B. Solenthaler, R. Keiser, and M. Gross, "Particle-based fluid-fluid interaction," in ACM SIGGRAPH/Eurographics symposium on Computer animation, 2005, pp. 237-244.
  12. H.-Y. Lee, J.-M. Hong, and C.-H. Kim, "Simulation of swirling bubbly water using bubble particles," The Visual Computer, vol. 25, no. 5-7, pp. 707-712, 2009. https://doi.org/10.1007/s00371-009-0338-0
  13. J. P. Morris, "Simulating surface tension with smoothed particle hydrodynamics," International journal for numerical methods in fluids, vol. 33, no. 3, pp. 333-353, 2000. https://doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
  14. M. Macklin and M. Muller, "Position based fluids," ACM Transactions on Graphics, vol. 32, no. 4, pp. 104:1-104:12, 2013.