DOI QR코드

DOI QR Code

Reliability Analysis Using Parametric and Nonparametric Input Modeling Methods

모수적·비모수적 입력모델링 기법을 이용한 신뢰성 해석

  • Kang, Young-Jin (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Hong, Jimin (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lim, O-Kaung (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Noh, Yoojeong (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2016.12.27
  • Accepted : 2017.01.03
  • Published : 2017.02.28

Abstract

Reliability analysis(RA) and Reliability-based design optimization(RBDO) require statistical modeling of input random variables, which is parametrically or nonparametrically determined based on experimental data. For the parametric method, goodness-of-fit (GOF) test and model selection method are widely used, and a sequential statistical modeling method combining the merits of the two methods has been recently proposed. Kernel density estimation(KDE) is often used as a nonparametric method, and it well describes a distribution function when the number of data is small or a density function has multimodal distribution. Although accurate statistical models are needed to obtain accurate RA and RBDO results, accurate statistical modeling is difficult when the number of data is small. In this study, the accuracy of two statistical modeling methods, SSM and KDE, were compared according to the number of data. Through numerical examples, the RA results using the input models modeled by two methods were compared, and appropriate modeling method was proposed according to the number of data.

신뢰성 해석 및 신뢰성기반 최적설계는 불확실성을 고려한 확률변수를 입력 값으로 요구하며, 확률변수는 모수적 비모수적 통계모델링 방법을 사용하여 확률분포함수의 형태로 정량화 된다. 신뢰성 해석과 같은 통계적 해석은 입력되는 확률분포함수의 특성이 결과값에 영향을 미치게 되며, 확률분포함수는 통계모델링 방법에 따라 다른 형태를 가지게 된다. 본 연구에서는 모수적 통계모델링 방법인 순차적 통계모델링 방법과 비모수적 방법인 커널밀도추정을 사용하여 데이터의 개수에 따른 통계모델링의 결과를 분석하였다. 또한 수치예제를 통해 두 가지 기법에 따른 신뢰성 해석의 결과를 분석하였고, 데이터의 개수에 따른 적절한 기법을 제안하였다.

Keywords

References

  1. Analytical Methods Committee (1989) Robust Statistics-how NOT to Reject Outliers. Part 1. Basic Concepts, Analyst, 114(12), pp.1693-1697. https://doi.org/10.1039/AN9891401693
  2. Ayyub, B.M., McCuen, R.H. (2012) Probability Statistics, and Reliability for Engineers and Scientists, CRC Press, Florida.
  3. Eldred, M.S., Agarwal, H., Perez, V.M., Wojtkiewicz Jr. S.F., Renaud, J.E. (2007) Investigation of Reliability Method Formulations in DAKOTA/UQ, Struct. & Infrastruct. Eng., 3(3), pp.199-213. https://doi.org/10.1080/15732470500254618
  4. Kang, Y.J., Lim, O.K., Noh, Y. (2016) Sequential Statistical Modeling Method for Distribution Type Identification, Struct. Multidisc. Optim., online first.
  5. Lee, T.H., Choi, J.S., Lim, W.C., Cho, S.G., Lee, M., Hong, S. (2013) Nonparametric Reliability Analysis for Design of a Mechanical System Working on an Inaccessible Area, 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida, USA.
  6. Lim, W., Lee, T.H. (2012) Reliability based Design Optimization using Akaike Information Criterion for Discrete Information, Trans. Korean Soc. Mech. Eng., A, 36(8), pp.921-927. https://doi.org/10.3795/KSME-A.2012.36.8.921
  7. Noh, Y. (2016) A Comparison Study on Statistical Modeling Methods, J. Korea Acad.-Industrial co. Soc., 17(5), pp.645-665. https://doi.org/10.5762/KAIS.2016.17.5.645
  8. Noh, Y., Choi, K.K., Lee, I. (2010) Identification of Marginal and Joint CDFs using Bayesian Method for RBDO, Struct. Multidisc. Optim., 40(1), pp.35-51. https://doi.org/10.1007/s00158-009-0385-1
  9. Schwarz, G. (1978) Estimating the Dimension of a Model, Ann. Statistics, 6(2), pp.461-464. https://doi.org/10.1214/aos/1176344136
  10. Scott, D.W. (1979) On Optimal and Data-based Histograms, Biom., 66(3), pp.605-610. https://doi.org/10.1093/biomet/66.3.605
  11. Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis, 26, CRC Press, London.
  12. Wand, M.P., Jones, M.C. (1994) Kernel Smoothing, CRC Press, London.

Cited by

  1. Kernel density estimation with bounded data vol.57, pp.1, 2018, https://doi.org/10.1007/s00158-017-1873-3