DOI QR코드

DOI QR Code

Animal lectins: potential receptors for ginseng polysaccharides

  • Loh, So Hee (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Park, Jin-Yeon (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Cho, Eun Hee (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kang, Young-Sun (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University)
  • 투고 : 2015.07.08
  • 심사 : 2015.12.04
  • 발행 : 2017.01.15

초록

Panax ginseng Meyer, belonging to the genus Panax of the family Araliaceae, is known for its human immune system-related effects, such as immune-boosting effects. Ginseng polysaccharides (GPs) are the responsible ingredient of ginseng in immunomodulation, and are classified as acidic and neutral GPs. Although GPs participate in various immune reactions including the stimulation of immune cells and production of cytokines, the precise function of GPs together with its potential receptor(s) and their signal transduction pathways have remained largely unknown. Animal lectins are carbohydrate-binding proteins that are highly specific for sugar moieties. Among many different biological functions in vivo, animal lectins especially play important roles in the immune system by recognizing carbohydrates that are found exclusively on pathogens or that are inaccessible on host cells. This review summarizes the immunological activities of GPs and the diverse roles of animal lectins in the immune system, suggesting the possibility of animal lectins as the potential receptor candidates of GPs and giving insights into the development of GPs as therapeutic biomaterials for many immunological diseases.

키워드

참고문헌

  1. Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137:183S-5S. https://doi.org/10.1093/jn/137.1.183S
  2. Angelova N, Kong HW, van der Heijden R, Yang SY, Choi YH, Kim HK, Wang M, Hankemeier T, van der Greef J, Xu G, et al. Recent methodology in the phytochemical analysis of ginseng. Phytochem Anal 2008;19:2-16. https://doi.org/10.1002/pca.1049
  3. Wang L, Yu X, Yang X, Li Y, Yao Y, Lui EM, Ren G. Structural and antiinflammatory characterization of a novel neutral polysaccharide from North American ginseng (Panax quinquefolius). Int J Biol Macromol 2014;74C:12-7.
  4. Ni Xiu-zhen, Wang Bing-qing, Zhi Yuan, Wei Ning-ning, Zhang Xu, Li Shanshan, Tai Gui-hua, Zhou Yi-fa, Zhao Ji-ming. Total fractionation and analysis of polysaccharides from leaves of Panax ginseng C.A. Meyer. Chem Res Chniese Universities 2010;26:230-4.
  5. Borchers AT, Keen CL, Stern JS, Gershwin ME. Inflammation and native American medicine: the role of botanicals. Am J Clin Nutr 2000;72:339-47. https://doi.org/10.1093/ajcn/72.2.339
  6. Lee DC, Yang CL, Chik SC, Li JC, Rong JH, Chan GC, Lau AS. Bioactivity-guided identification and cell signaling technology to delineate the immunomodulatory effects of Panax ginseng on human promonocytic U937 cells. J Transl Med 2009;7:34. https://doi.org/10.1186/1479-5876-7-34
  7. Biondo PD, Goruk S, Ruth MR, Ruth MR, O'Connell E, Field CJ. Effect of CVTE002 (COLD-fX) versus a ginsenoside extract on systemic and gut-associated immune function. Int Immunopharmacol 2008;8:1134-42. https://doi.org/10.1016/j.intimp.2008.04.003
  8. Lim TS, Na K, Choi EM, Chung JY, Hwang JK. Immunomodulating activities of polysaccharides isolated from Panax ginseng. J Med Food 2004;7:1-6. https://doi.org/10.1089/109662004322984626
  9. Sun XB, Matsumoto T, Kiyohara H, Hirano M, Yamada H. Cytoprotective activity of pectic polysaccharides from the root of Panax ginseng. J Ethnopharmacol 1991;31:101-7. https://doi.org/10.1016/0378-8741(91)90148-7
  10. Assinewe VA, Amason JT, Aubry A, Mullin J, Lemaire I. Extractable polysaccharides of Panax quinquefolius L. (North American ginseng) root stimulate TNFalpha production by alveolar macrophages. Phytomedicine 2002;9:398-404. https://doi.org/10.1078/09447110260571625
  11. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  12. Kitts D, Hu C. Efficacy and safety of ginseng. Public Health Nutr 2000;3:473-85.
  13. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang J, Kim HJ, Park CW, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012;33:151-62. https://doi.org/10.1007/s10059-012-2216-z
  14. Yun T-K. Panax ginsengea non-organ-specific cancer preventive? Lancet Oncol 2001;2:49-55. https://doi.org/10.1016/S1470-2045(00)00196-0
  15. Sun Y. Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng C.A. Meyer: an overview. Carbohydr Polym 2011;85:490-9. https://doi.org/10.1016/j.carbpol.2011.03.033
  16. Friedl R, Moeslinger T, Kopp B, Spieckermann PG. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br J Pharmacol 2001;134:1663-70. https://doi.org/10.1038/sj.bjp.0704425
  17. Choi HS, Kim KH, Sohn E, Park JD, Kim BO, Moon EY, Rhee DK, Pyo S. Red ginseng acidic polysaccharide (RGAP) in combination with IFN-gamma results in enhanced macrophage function through activation of the NF-kappaB pathway. Biosci Biotechnol Biochem 2008;72:1817-25. https://doi.org/10.1271/bbb.80085
  18. Srivastava R. Bioactive polysaccharides from plants. Phytochemistry 1989;28:2877-83. https://doi.org/10.1016/0031-9422(89)80245-6
  19. Wang M, Guilbert LJ, Li J, Wu Y, Pang P, Basu TK, Shan JJ. A proprietary extract from North American ginseng (Panax quinquefolium) enhances IL-2 and IFNgamma productions in murine spleen cells induced by Con-A. Int Immunopharmacol 2004;4:311-5. https://doi.org/10.1016/j.intimp.2003.12.002
  20. Xu Zhang, Li Yu, Hongtao Bi, Xianhua Li, Weihua Ni, Han Han, Nan Li, Bingqing Wang, Yifa Zhou, Guihua Tai. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. Carbohydr Polym 2009;77:544-52. https://doi.org/10.1016/j.carbpol.2009.01.034
  21. Ni W, Zhang X, Wang B, Chen Y, Han H, Fan Y, Zhou Y, Tai G. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil. J Med Food 2010;13:270-7. https://doi.org/10.1089/jmf.2009.1119
  22. Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydr Res 2006;341:1154-63. https://doi.org/10.1016/j.carres.2006.03.032
  23. Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol 2002;2:857-65. https://doi.org/10.1016/S1567-5769(01)00211-9
  24. Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol Immunotoxicol 2002;24:469-82. https://doi.org/10.1081/IPH-120014730
  25. Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, Joo HG. Immunomodulatory activity of ginsan, a polysaccharide of Panax ginseng, on dendritic cells. Korean J Physiol Pharmacol 2009;13:169-73. https://doi.org/10.4196/kjpp.2009.13.3.169
  26. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med 1998;64:110-5. https://doi.org/10.1055/s-2006-957385
  27. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res 1997;17:323-31.
  28. Yoo DG, Kim MC, Park MK, Park KM, Quan FS, Song JM, Wee JJ, Wang BZ, Cho YK, Compans RW. Protective effect of ginseng polysaccharides on influenza viral infection. PLoS One 2012;7:e33678. https://doi.org/10.1371/journal.pone.0033678
  29. Lemmon HR, Sham J, Chau LA, Madrenas J. High molecular weight polysaccharides are key immunomodulators in North American ginseng extracts: characterization of the ginseng genetic signature in primary human immune cells. J Ethnopharmacol 2012;142:1-13. https://doi.org/10.1016/j.jep.2012.04.004
  30. Tomoda M, Hirabayashi K, Shimizu N, Gonda R, Ohara N, Takada K. Characterization of two novel polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 1993;16:1087-90. https://doi.org/10.1248/bpb.16.1087
  31. Sonoda Y, Kasahara T, Mukaida N, Shimizu N, Tomoda M, Takeda T. Stimulation of interleukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacology 1998;38:287-94. https://doi.org/10.1016/S0162-3109(97)00091-X
  32. Shin HJ, Kim YS, Kwak YS, Song YB, Kim YS, Park JD. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Med 2004;70:1033-8. https://doi.org/10.1055/s-2004-832643
  33. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, Song JY. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Tolllike receptor-mediated inflammatory signals. Eur J Immunol 2006;36:37-45. https://doi.org/10.1002/eji.200535138
  34. Nguyen V, Tang J, Oroudjev E, Lee CJ, Marasigan C, Wilson L, Ayoub G. Cytotoxic effects of bilberry extract on MCF7-GFP-tubulin breast cancer cells. J Med Food 2010;13:278-85. https://doi.org/10.1089/jmf.2009.0053
  35. Kim YS, Kang KS, Kim SI. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Arch Pharm Res 1990;13:330-7. https://doi.org/10.1007/BF02858168
  36. Zhao HY, Zhang WD, Xiao C, Lu C, Xu SH, He XJ, Li XB, Chen SL, Yang DJ, Chan ASC, et al. Effect of ginseng polysaccharide on TNF-alpha and IFNgamma produced by enteric mucosal lymphocytes in collagen induced arthritic rats. J Med Plant Res 2011;5:1536-42.
  37. Pillai R, Lacy P. Inhibition of neutrophil respiratory burst and degranulation responses by CVT-E002, the main active ingredient in COLD-FX. Allergy Asthma Clin Immunol 2011;7:A31. https://doi.org/10.1186/1710-1492-7-S2-A31
  38. Wang M, Guilbert LJ, Ling L, Li J, Wu Y, Xu S, Pang P, Shan JJ. Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium). J Pharm Pharmacol 2001;53:1515-23. https://doi.org/10.1211/0022357011777882
  39. Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of Staphylococcus aureusinfected septic mice by suppression of early acute inflammation and enhanced antimicrobial activity by ginsan. FEMS Immunol Med Microbiol 2006;46:187-97. https://doi.org/10.1111/j.1574-695X.2005.00021.x
  40. McElhaney JE, Gravenstein S, Cole SK, Davidson E, O'Neill D, Petitjean S, Rumble B, Shan JJ. A placebo-controlled trial of a proprietary extract of North American ginseng (CVT-E002) to prevent acute respiratory illness in institutionalized older adults. J Am Geriatr Soc 2004;52:13-9. https://doi.org/10.1111/j.1532-5415.2004.52004.x
  41. Lu ZQ, Dice JF. Ginseng extract inhibits protein degradation and stimulates protein synthesis in human fibroblasts. Biochem Biophys Res Commun 1985;126:636-40. https://doi.org/10.1016/0006-291X(85)90653-9
  42. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun 2009;388:621-5. https://doi.org/10.1016/j.bbrc.2009.08.062
  43. Etzler ME. Distribution and function to plant lectins. In: The lectins. San Diego: Academic Press; 2012. p. 371-436.
  44. Kilpatrick DC. Animal lectins: a historical introduction and overview. Biochim Biophys Acta 2002;1572:187-97. https://doi.org/10.1016/S0304-4165(02)00308-2
  45. Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 2011;113:236-47. https://doi.org/10.1016/j.acthis.2010.02.004
  46. Sharon H, La N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 1998;98:637-74. https://doi.org/10.1021/cr940413g
  47. Anderson K, David Evers, Rice Kevin G. Structure and function of mammalian carbohydrate-lectin interactions. Glycoscience 2008:2445-82.
  48. Matsumoto J, Nakamoto C, Fujiwara S, Yubisui T, Kawamura K. A novel C-type lectin regulating cell growth, cell adhesion and cell differentiation of the multipotent epithelium in budding tunicates. Development 2001;128:3339-47.
  49. Singh H. Insight of lectinseA review. Int J Sci Eng Res 2012;3:1-9.
  50. Drickamer K, Taylor ME. Biology of animal lectins. Annu Rev Cell Biol 1993;9:237-64. https://doi.org/10.1146/annurev.cb.09.110193.001321
  51. Gabius HJ. Animal lectins. Eur J Biochem 1997;243:543-76. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00543.x
  52. Graham LM. The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through syk kinase. J Biol Chem 2012;287:25964-74. https://doi.org/10.1074/jbc.M112.384164
  53. Cambi A. How C-type lectins detect pathogens. Cell Microbiol 2005;7:481-8. https://doi.org/10.1111/j.1462-5822.2005.00506.x
  54. Figdor A, Ca CG. Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol 2003;15:539-46. https://doi.org/10.1016/j.ceb.2003.08.004
  55. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol 2015;32:21-7. https://doi.org/10.1016/j.coi.2014.12.002
  56. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002;111:927-30. https://doi.org/10.1016/S0092-8674(02)01201-1
  57. McGreal EP, Martinez-Pomares L, Gordon S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol Immunol 2004;41:1109-21. https://doi.org/10.1016/j.molimm.2004.06.013
  58. Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology 2009;214:562-75. https://doi.org/10.1016/j.imbio.2008.11.003
  59. Relloso M, Puig-Kroger A, Pello OM, Rodriguez-Fernandez JL, de la Rosa G, Longo N, Navarro J, Munoz-Fernandez MA, Sanchez-Mateos P, Corbi AL. DCSIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol 2002;168:2634-43. https://doi.org/10.4049/jimmunol.168.6.2634
  60. Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol 2014;33:54-66. https://doi.org/10.3109/08830185.2013.834897
  61. Powlesland AS, Ward EM, Sadhu SK, Guo Y, Taylor ME, Drickamer K. Widely divergent biochemical properties of the complete set of mouse DC-SIGNrelated proteins. J Biol Chem 2006;281:20440-9. https://doi.org/10.1074/jbc.M601925200
  62. Park CG, Takahara K, Umemoto E, Yashima Y, Matsubara K, Matsuda Y, Clausen BE, Inaba K, Steinman RM. Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol 2001;13:1283-90. https://doi.org/10.1093/intimm/13.10.1283
  63. Kang YS, Do Y, Lee HK, Park SH, Cheong C, Lynch RM, Loeffler JM, Steinman RM, Park CG. A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 2006;125:47-58. https://doi.org/10.1016/j.cell.2006.01.046
  64. Lanoue A, Clatworthy MR, Smith P, Green S, Townsend MJ, Jolin HE, Smith KG, Fallon PG, McKenzie AN. SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 2004;200:1383-93. https://doi.org/10.1084/jem.20040795
  65. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 2008;105:19571-8. https://doi.org/10.1073/pnas.0810163105
  66. Chakraborty R, Chakraborty P, Basu MK. Macrophage mannosyl fucosyl receptor: its role in invasion of virulent and avirulent L. donovani promastigotes. Biosci Rep 1998;18:129-42. https://doi.org/10.1023/A:1020192512001
  67. Kabha K, Nissimov L, Athamna A, Keisari Y, Parolis H, Parolis LA, Grue RM, Schlepper-Schafer J, Ezekowitz AR, Ohman DE. Relationships among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae. Infect Immun 1995;63:847-52.
  68. Kahn S. Trypanosoma cruzi amastigote adhesion to macrophages is facilitated by the mannose receptor. J Exp Med 1995;182:1243-58. https://doi.org/10.1084/jem.182.5.1243
  69. Zamze S, Martinez-Pomares L, Jones H, Taylor PR, Stillion RJ, Gordon S. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 2002;277:41613-23. https://doi.org/10.1074/jbc.M207057200
  70. McGreal EP, Miller JL, Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 2005;17:18-24. https://doi.org/10.1016/j.coi.2004.12.001
  71. den Brouw MLO, Binda RS, Geijtenbeek TBH, Janssen HL, Woltman AM. The mannose receptor acts as hepatitis B virus surface antigen receptor mediating interaction with intrahepatic dendritic cells. Virology 2009;393:84-90. https://doi.org/10.1016/j.virol.2009.07.015
  72. Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000;74:5190-7. https://doi.org/10.1128/JVI.74.11.5190-5197.2000
  73. Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL. Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 2009;284:11027-38. https://doi.org/10.1074/jbc.M809698200
  74. Kogelberg H, Feizi T. New structural insights into lectin-type proteins of the immune system. Curr Opin Struct Biol 2001;11:635-43. https://doi.org/10.1016/S0959-440X(00)00259-1
  75. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301-14. https://doi.org/10.1016/0092-8674(94)90337-9
  76. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood 1996;88:3259-87.
  77. Pohlmann R, Boeker MW, von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem 1995;270:27311-8. https://doi.org/10.1074/jbc.270.45.27311
  78. Arason GJ. Lectins as defence molecules in vertebrates and invertebrates. Fish Shellfish Immunol 1966;6:277-89.
  79. Dodd RB, Drickamer K. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 2001;11:71R-9R. https://doi.org/10.1093/glycob/11.5.71R
  80. Williams AF. A year in the life of the immunoglobulin superfamily. Immunol Today 1987;8:298-303. https://doi.org/10.1016/0167-5699(87)90016-8
  81. Angata T, Brinkman-Van der Linden E. I-type lectins. Biochim Biophys Acta 2002;1572:294-316. https://doi.org/10.1016/S0304-4165(02)00316-1
  82. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946;6:205-16.
  83. Hamuro J, Chihara G, Lentinan. a T-cell oriented immunopotentiator: its experimental and clinical applications and possible mechanism of immune modulation. In: Fenichel RL, Chirigos MA, editors. Immune modulation agents and their mechanisms. New York: Marcel Dekker; 1984. p. 409.
  84. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002;60:258-74. https://doi.org/10.1007/s00253-002-1076-7
  85. Nergard CS, Matsumoto T, Inngjerdingen M, Inngjerdingen K, Hokputsa S, Harding SE, Michaelsen TE, Diallo D, Kiyohara H, Paulsen BS. Structural and immunological studies of a pectin and a pectic arabinogalactan from Vernonia kotschyana Sch. Bip. ex Walp. (Asteraceae). Carbohydr Res 2005;340:115-30. https://doi.org/10.1016/j.carres.2004.10.023
  86. Shao BM, Xu W, Dai H, Tu P, Li Z, Gao XM. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun 2004;320:1103-11. https://doi.org/10.1016/j.bbrc.2004.06.065
  87. Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006;6:317-33. https://doi.org/10.1016/j.intimp.2005.10.005
  88. El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 2013;31:668-77. https://doi.org/10.1016/j.tibtech.2013.09.003
  89. Ramberg JE, Nelson ED, Sinnott RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 2010;9:54. https://doi.org/10.1186/1475-2891-9-54
  90. Chang WT, Lai TH, Chyan YJ, Yin SY, Chen YH, Wei WC, Yang NS. Specific medicinal plant polysaccharides effectively enhance the potency of a DCbased vaccine against mouse mammary tumor metastasis. PLoS One 2015;10:e0122374. https://doi.org/10.1371/journal.pone.0122374
  91. Yeon-Sook Yun, Jie-Young Song, In-Sung Jung, investors; Korea Institute of Radiological & Medical Sciences, assignee. Composition comprising polysaccharide extracted from Panax ginseng preventing and treating liver diseases. US patent 20110046086. February 24, 2011.
  92. Vasta GR, Ahmed H, Bianchet MA, Fernandez-Robledo JA, Amzel LM. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Ann N Y Acad Sci 2012;1253:E14-26. https://doi.org/10.1111/j.1749-6632.2012.06698.x
  93. Weis WI, Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 1996;65:441-73. https://doi.org/10.1146/annurev.bi.65.070196.002301
  94. Yadav M, Schorey JS. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 2006;108:3168-75. https://doi.org/10.1182/blood-2006-05-024406
  95. Byeon SE, Lee J, Kim JH, Yang S, Kwak YS, Kim SY, Choung ES, Rhee MH, Cho JY. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm 2012;2012:732860.

피인용 문헌

  1. Cibotium barometz polysaccharides stimulate chondrocyte proliferation in vitro by promoting G1/S cell cycle transition vol.15, pp.5, 2017, https://doi.org/10.3892/mmr.2017.6412
  2. Purification and Characterization of a New Lectin from Loach Skin Mucus vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/3853646
  3. Sources, Extraction and Biomedical Properties of Polysaccharides vol.8, pp.8, 2017, https://doi.org/10.3390/foods8080304
  4. The Galactose-Binding Lectin Isolated from Vatairea macrocarpa Seeds Enhances the Effect of Antibiotics Against Staphylococcus aureus-Resistant Strain vol.12, pp.1, 2020, https://doi.org/10.1007/s12602-019-9526-z
  5. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences vol.18, pp.3, 2017, https://doi.org/10.2174/1570159x17666191016092221
  6. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions vol.25, pp.24, 2017, https://doi.org/10.3390/molecules25245854
  7. Activity of Mannose-Binding Lectin on Bacterial-Infected Chickens-A Review vol.11, pp.3, 2017, https://doi.org/10.3390/ani11030787