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Panax ginseng Meyer, belonging to the genus Panax of the family Araliaceae, is known for its human
immune system-related effects, such as immune-boosting effects. Ginseng polysaccharides (GPs) are the
responsible ingredient of ginseng in immunomodulation, and are classified as acidic and neutral GPs.
Although GPs participate in various immune reactions including the stimulation of immune cells and
production of cytokines, the precise function of GPs together with its potential receptor(s) and their
signal transduction pathways have remained largely unknown. Animal lectins are carbohydrate-binding
proteins that are highly specific for sugar moieties. Among many different biological functions in vivo,
animal lectins especially play important roles in the immune system by recognizing carbohydrates that
are found exclusively on pathogens or that are inaccessible on host cells. This review summarizes the
immunological activities of GPs and the diverse roles of animal lectins in the immune system, suggesting
the possibility of animal lectins as the potential receptor candidates of GPs and giving insights into the

therapeutic biomaterials

development of GPs as therapeutic biomaterials for many immunological diseases.

Copyright © 2016, The Korean Society of Ginseng, Published by Elsevier. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
1.1. Ginseng polysaccharides

1.1.1. Ginseng

Panax ginseng Meyer is a well-known medicinal plant in the
world. The ginseng is a deciduous perennial belonging to the
family Araliaceae and genus Panax. The genus name of ginseng,
Panax, is derived from the Greek pan (all) akos (cure), meaning
“cure-all” or “all healing,” which describes the traditional belief
that ginseng has properties to heal all aspects of the body. The
name ginseng comes from the Chinese words “Jen Sheng,”
meaning “man-herb,” because of the humanoid shape of the root
or rhizome of the plant, which is the part of the plant most
commonly used for extraction [1,2]. There are about 13 different
species of ginseng which have being identified all over the world.
Among them, the most commonly used species of ginseng are
Asian ginseng (P. ginseng Meyer, Renshen) and American ginseng

(Panax quinquefolius L., Xiyangshen) which all belong to the Panax
genus of the Araliaceae family [3]. Asian ginseng has been used for
thousands of years as a tonic to improve overall health, restore the
body to balance, help the body to heal itself, and reduce stress [4],
and American ginseng has been used by Native Americans for at
least hundreds of years [2,5]. Ginseng is prepared and used in
several ways as fresh ginseng (sliced and eaten, or brewed in a
tea), white ginseng (peeled and dried), red ginseng (peeled,
steamed, and dried), extract (tincture or boiled extract), powder,
tea, tablet, or capsule [1,2]. It has been reported that ginseng ex-
hibits a wide range of beneficial pharmacological effects including
immunomodulation, antitumor, antioxidation, antidepression,
hypoglycemic, inhibition of gastric lesions, attenuation of leptin-
induced cardiac hypertrophy, heart protection against ischemia
and reperfusion injury, prevention of glucose-induced oxidative
stress, prevention of diabetic nephropathy, retinopathy, and car-
diomyopathy [6—10]. This broad spectrum of biological activity of
ginseng has originated from its multiple bioactive components,
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namely ginsenosides, polysaccharides (PSs),
acetylenic alcohols, and gintonin [11—13].

peptides, poly-

1.1.2. The composition of ginseng polysaccharides

Ginsenosides were considered to be responsible for most of
ginseng’s pharmacological effects. However, recent studies indicate
that ginseng polysaccharides (GPs), one of the active components
of ginseng [14], also possess a wide range of biological and phar-
maceutical activities, including immune-modulation, antitumor,
antiadhesive, antioxidant and hypoglycemic activities [8,15].
Especially, GPs are known for their immunostimulatory effects
[10,16,17] and a major contributor to the bioactivity of herbal
medicines, providing great potential applications in food, phar-
maceuticals, and other industries. Therefore, GPs were extensively
studied for their constituents and chemical structures. GPs are
biopolymers formed from a complex chain of monosaccharides rich
in L-arabinose, p-galactose, L.-rhamnose, p-galacturonic acid, p-glu-
curonic acid, and p-galactosyl residue linked together through
glycosidic bonds, resulting in complex macromolecular architec-
tures [7,18,19]. Their molecular weights range from 3500 Da to
2,000,000 Da [19], which contributes to their diverse physico-
chemical properties and biological activities [8,15,19,20].

GPs include acidic and neutral PSs. The pharmacological effects
of GPs, including immunomodulation, can be attributed to these
acidic and neutral PS components [ 15]. While the acidic GPs contain
different amounts of uronic acids and neutral sugars [15,21], the
neutral PSs mainly contain different ratios of neutral sugar residues
[3]. So far, the studies about American GPs have mainly been
centered on acidic PSs, resulting in relatively limited research that
explores neutral PSs. However, researchers also have interest in
neutral PSs of American GPs, because neutral PSs are also one of the
important active components in the American ginseng roots. The
PSs from ginseng roots have many bioactivities, such as immuno-
modulation, antitumor, and hypoglycemic activities [11,22], and
contain 60% neutral starch-like PSs, 15% arabinogalactans, and 25%
pectins [20]. Similarly, the PSs from ginseng leaves are also bioac-
tive, and contain about 70% arabinogalactans and 20% pectins.

1.1.3. The immune functions of GPs

GPs enable enhancement of the production of cytokines and
reactive oxygen species by stimulating macrophages [23,24]. In a
recent study, GP was shown to stimulate dendritic cells (DCs)
resulting in enhanced production of interferon-y (IFN-v) [25]. It
was reported that acidic GPs promoted the production of cytotoxic
cells against tumors and stimulated macrophages to produce
helper types 1 and 2 (Th1 and Th2) cytokines [26,27]. An acidic GP
from P. ginseng has been shown to display immunomodulatory
effects either in an immunostimulatory or in an immunosuppres-
sive manner, depending on timing of treatments and disease en-
vironments [28]. This acidic GP was also shown to modulate the
antioxidant defense systems such as superoxide dismutase and
glutathione peroxidase enzymes, probably via inducing regulatory
cytokines [15,29]. Therefore, acidic GPs have been considered as the
major bioactive species for immune modulations. Tomoda et al [30]
reported that two acidic PSs of P. ginseng enhance the phagocytic
activity of macrophages, and Sonoda et al [31] found that an acidic
GP of P. ginseng was a potent inducer of interleukin-8 (IL-8) pro-
duction by human monocytes and THP-1 cells. Shin et al [32] re-
ported that an acidic PS of P. ginseng shows immune modulatory
activities via macrophage NO production. Recently, Lemmon et al
[29] reported that the immunostimulatory effects of acidic GPs of
P. quinquefolius are mediated by PS with a molecular weight higher
than 100 kDa. It was reported that acidic GPs promoted the pro-
duction of cytotoxic cells against tumors and stimulated macro-
phages to produce helper types 1 and 2 (Th1 and Th2) cytokines

[26,27]. Intravenous pretreatment of GP attenuated the produc-
tion of serum proinflammatory and antiinflammatory cytokines
after septic bacterial infection [33].

In addition, Ginsan, an acidic GP from of P. ginseng, is a well-
known medicinal herb and has been shown to have critical ef-
fects on immune cells, which shows an immunomodulatory acidic
GP from P. ginseng [27]. Kim et al [26] showed that Ginsan induces
Th1 cell and macrophage cytokines. Ginsan enhances the produc-
tion of cytokines and reactive oxygen species by macrophages [24]
and stimulates the phagocytic activity of macrophages [23]. Also,
Ginsan induces the maturation of DCs [25], profoundly enhancing
the production of IL-12, IL-10, and tumor necrosis factor alpha
(TNF-a.) by DCs and showed that Ginsan may modulate DC function
by altering cytokine levels [25]. For neutral GPs, it was reported that
neutral GPs of P. ginseng stimulate the proliferation of lymphocytes,
increase the cytotoxicity of natural killer cell, enhance the phago-
cytosis and NO production by macrophages, and increase the level
of TNF-a.in serum [21,34]. Due to these results, many scientists have
considered both acidic and neutral GPs as stimulators in the im-
mune system. X. Zhang et al and Kim et al reported that both acidic
and neutral GPs of P. ginseng (Asian ginseng) may stimulate B cells,
T cells and macrophages [20,35]. In addition, they considered the
relation of acidic and neutral GPs as the supporter, in which neutral
GPs help the enhancement of immunostimulatory effects of acidic
GPs. In fact, W. Ni et al reported that neutral GPs of P. ginseng
enhance macrophage production of NO [21].

On the contrary to immunostimulatory effects of GPs, recent
studies showed that GPs also suppress the proinflammatory re-
sponses. Recently, it was reported that a novel neutral PS (PPQN,
3.1 kDa) was isolated from American ginseng roots and could
suppress inflammation by inhibiting the secretion of inflammatory-
related mediator nitric oxide (NO) and cytokines (TNF-a, IL-6, and
IL-18) compared to Lipopolysaccharide (LPS) treatment, impli-
cating the therapeutic implications of PPQN in inflammatory-
related diseases like tumors, atherosclerosis, and so on [3]. As an
example, one study reported that GPs inhibit immunological re-
sponses associated with collagen-induced arthritis [36]. Other
studies also suggest that CVT-E002, a poly-furanosyl-pyranosyl
polysaccharide-rich herbal and unique extract product of the root
of American ginseng (P. quinquefolium), suppresses the inflamma-
tory immune responses, reducing the activation of neutrophils [37],
inducing the production of IL-2, IFN-y, TNF-a, and IL-6 in spleen
[7,19,38], and increasing the proliferation of splenic B lymphocytes,
bone marrow, and natural killer cells.

1.1.4. The working mechanisms of GPs in pathogen protection
Intravenous pretreatment of GP attenuated the production of
serum proinflammatory and antiinflammatory cytokines after
septic bacterial infection [33]. Also, this intravenous pretreatment
of GPs in mice enhances macrophage-mediated bactericidal activity
by reducing the number of Staphylococcus aureus which is present
in the spleen, kidney, and blood and exerts a protective effect
against infected septic mice by suppressing early acute inflamma-
tion [33,39]. In addition, recent studies reported that pretreatment
with GP suppressed acute inflammatory responses at an early
phase resulting in the enhancement of antimicrobial activities and
protection of mice from Staphylococcus aureus-induced sepsis as an
antiinflammatory function [33,39]. As an example, CVT-E002 has
been shown to be effective for preventing acute respiratory illness
caused by influenza and respiratory syncytial virus [7,40]. Another
study revealed that intranasal administration of GPs showed a
protective effect on influenza viral infection by lowering the levels
of inflammatory cytokines (IL-6) and lung viral titers [28]. Because
GPs were reported to significantly increase the viability of perito-
neal macrophage cells [8] and ginseng was shown to inhibit
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Fig. 1. The structure, cellular distribution, and reactive immune components of animal lectins. Domain structure models, the location of several representative animal lectins, and
the immune cells reacting with animal lectins. Carbohydrate-recognition domains (CRDs) of each lectin are depicted in the respective whole structures. S-type lectins are secreted
into the extracellular matrix of body fluids. C-type and I-type lectins are localized to the plasma membrane, and P-type lectins are located in luminal compartments of the secretory
pathway. CD-MPR, cation-dependent mannose-6-phosphate receptor; CI-MPR, cation-independent mannose-6-phosphate receptor; CRD, carbohydrate-recognition domain; DC,
dendritic cell; DC-SIGN, DC-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; IGF, insulin-like growth factor; MRH Man-6P, mannose 6-phosphate receptor
homology; ITIM/ITAM motif, immunoreceptor tyrosine-based inhibition/immunoreceptor tyrosine-based activation motif.

degradation of long-lived proteins and to stimulate protein syn-
thesis similar to polypeptide growth factors [41], it was suggested
that maintaining the cell viability under the condition of viral
infection-induced stress might be an another alternative mecha-
nism for the protective effects of GP.

It was reported that the recognition and binding of plant PSs by
Toll-like receptor 4 (TLR4) leads to the recruitment of various
cytoplasmic Toll/IL-1 receptor (TIR) domain-containing adaptors
such as myeloid differentiation factor 88 (MyD88), TIR domain-
containing adaptor protein (TIRAP), and TIR (Toll/interleukin-1 re-
ceptor)-domain-containing adapter-inducing interferon-p (TRIF)-
related adaptor molecule (TRAM) [42]. It was also shown that the
expression of TLRs including TLR2, TLR4, and the adaptor molecule
MyD88 is significantly reduced in murine macrophages by GP
pretreatment in vitro, which were increased in murine macro-
phages with the stimulation of S. aureus [33,39]. On the contrary,
Friedl et al [16] and Lemmon et al [29] showed that American GP
extracts may mediate the immunostimulatory effect by the
inducible nitric oxide synthase (iNOS), mitogen-activated protein
kinase (MAPK) kinases such as p38, extracellular signal-regulated
kinases 1/2 (ERK1/2), phosphoinositide 3-kinase (PI3K), and nu-
clear factor kappa B (NF-kB) signaling pathways [16,29]. Therefore,
these results suggest that GPs might be associated with the ability

of the extract’s PS fractions to bind to TLR4 receptor and upregulate
or downregulate TLR4 receptor expression, which triggers or in-
hibits the intracellular signaling cascades and the production of
proinflammatory mediators under basal or LPS endotoxic condi-
tions, respectively.

1.2. Animal lectins

1.2.1. Introduction to animal lectins

Animal lectins are carbohydrate-binding proteins which are
highly variable in their amino acid sequences, widely distributed in
microorganisms, viruses, animals and higher plants with different
functions, structures, tissue localizations, and carbohydrate-
binding specificities [43]. Animal lectins were discovered before
plant lectins, although many were not recognized as carbohydrate
binding proteins for many years after first being reported [44].
Although plant and animal lectins do not have homologous primary
structures, they have similar preferential binding to carbohydrates
[45]. Animal lectins are neither immune origin nor catalyst, in
contrast to antibodies or enzymes, and are able to detect or bind
complex carbohydrate structures specifically through the
carbohydrate-recognition domain (CRD) [46,47]. Each animal lectin
possess its own CRD which has an identical sequence motif of 115 to
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130 amino acid residues and four cysteines that is thoroughly
conserved and form two disulfide bonds [47,48].

Animal lectin activity is found in association with an astonishing
diversity of primary structures [44]. At least 12 structural families
are known to exist and bind structures other than carbohydrates
via protein-protein, protein-lipid or protein-nucleic acid in-
teractions [44]. Their roles in glycol-recognition systems include
complement activation, cell recognition, cell adhesion, cell migra-
tion, cell signaling, and morphogenesis. Moreover, animal lectins
are able to take part in defense mechanisms, importantly by
recognizing a carbohydrate of pathogens [47,48]. Animal lectins are
means of attachment to various cells or viruses via the surface
carbohydrate types of the cells to be attached [49]. The function in
recognition or cell surface interaction of animal lectins has been
implicated in direct first-line defense against pathogens [44]. For
example, the mannose specific receptor, presented on the surface of
macrophages, can bind to the infectious organisms which expose
mannose-containing glycans on their surface, enabling them to
ingest and kill the foreign organisms [49]. In addition, animal lec-
tins are involved in cell trafficking, immune regulation, and pre-
vention of autoimmunity [44]. Animal lectins are classified into
four families based on structure or function. These are the C-type
(calcium-requiring) lectins, P-type (mannose-6-phosphate bind-
ing) lectins, S-type (galectins) lectins, and I-type (immunoglobulin-
like) lectins (Fig. 1) [47]. Within each family, they have similar se-
quences and structural properties [46]. Recently, other lectin types
have been found, including M-type, L-type, chitinase-like, and F-
type lectins. In this review, four traditional families of animal lec-
tins are introduced (Table 1).

1.2.2. C-type lectins

C-type lectins are endocytic receptors which are mostly
expressed by macrophages, DCs, and some endothelial cells. C-type
lectins require Ca®* for activity and have common sequence motif
of 14 invariable and 18 highly conserved amino acid residues
[50,51]. As they have multi CRDs, C-type lectins are able to recog-
nize a wide range of carbohydrate-based ligands from endogenous
molecules to conserved structures found in bacteria, fungi, virus-
infected cells, and parasites called pathogen-associated molecular
patterns [52]. After recognition, C-type lectins subsequently
participate in the uptake for degradation in order to facilitate direct
elimination by macrophages or antigen presentation by DCs and
macrophages in Major histocompatibility complex (MHC) mole-
cules at the cell surface, resulting in stimulating the adaptive im-
mune system [53,54]. For example, C-type lectins can recognize
diverse bacterial pathogens and induce cytokine production and
Th17 responses in antibacterial immunity [55], and are critical in
systemic infections with pathogens like Cryptococcus neoformans in
antifungal immunity of Th1 effector cells [55]. In addition, they are
involved in clearance, homeostasis, and immunomodulation [56].
Many C-type lectins play primary roles in immunity. C-type lectins
include Dectins, DC-Specific Intercellular adhesion molecule-3-
Grabbing Non-integrin (DC-SIGN), SIGN-R1, mannose receptor
(MR), Collectin (MBL, SP-A, SP-D) and selectins (L-, P-, E-) (Table 2).

1.3. Dectin-1

Dectin-1 specifically binds to $-1,3 and B-1,6 linked glucans of
fungi, plant cell walls, and bacteria, including Candida albicans,
Saccharomyces cerevisiae, Coccidioides posadasii, and Pneumocystis
carinii, but cannot recognize monosaccharides or glucans with
other linkages. However, C. neoformans, Histoplasma capsulatum,
and Aspergillus fumigatus are not targeted by Dectin-1, in spite of
the presence of f-glucans in their cell wall [57,58]. Dectin-1 plays a
primary role in inducing proinflammatory mediators like TNF-o in

response to fungal pathogens. Also, Dectin-1 contains an immu-
notyrosine activation motif within its cytoplasmic tail, helping TLR2
signaling pathway by interaction with the immunotyrosine acti-
vation motif of Dectin-1 [57]. Signaling by Dectin-1 regulates
various cellular responses including phagocytosis and the produc-
tion of inflammatory cytokines such as IFNs, IL-23, IL-6, and IL-1
[58]. Dectin-1 expressed on DCs and macrophages can recognize
N-glycans of the surface of tumor cells, following nuclear trans-
location, and the induction of several genes such as Inam, which is
known to induce tumor killing by NK cells by hemophilic
interactions.

1.4. DC-SIGN

DC-SIGN was originally identified as a receptor for intercellular
adhesion molecule-3 (ICAM-3) that induces DC-mediated T-cell
proliferation [58]. It was subsequently unveiled to bind ICAM-2 on
vascular endothelial cells, regulating DCs migration through inter-
action of N-linked high mannose structures consisting of from five
to nine terminal mannose units [57]. DC-SIGN, which is expressed
by DCs, decidual and alveolar macrophages facilitates high-affinity
binding to high mannose oligosaccharides through tetramerization
[57]. Mannose-dependent interactions demonstrate the ability of
DC-SIGN to bind human immunodeficiency virus (HIV) and various
pathogens, including Mycobacterium tuberculosis, C. albicans,
Leishmania mexicana, A. fumigatus, Helicobacter pylori, and Schisto-
soma mansoni [58]. For instance, DC-SIGN recognizes mannosylated
lipoarabinomannan, which is a mannose-capped glycolipid found
in the cell wall of M. tuberculosis. This interaction can induce the
secretion of the immunosuppressive cytokine, IL-10, from DCs
which expresses DC-SIGN [57]. DC-SIGN expression is mostly
induced by IL-4, and is downregulated by IFN-y, TGFB, and dexa-
methasone [58,59].

1.5. Eight mouse genes homologous to DC-SIGN (SIGN-Related
gene)

The murine DC-SIGN homologues were reported to help to
identify the roles of DC-SIGN in infection and inflammation and to
play important roles in bacterial, fungal, and parasitic infections.
There are seven mouse genes in the mouse DC-SIGN locus, con-
taining SIGN-R1-5 and SIGN-R7, 8, and a pseudogene, SIGN-R6
[60,61]. The mRNA of three SIGN-R genes encode type II trans-
membrane proteins (SIGN-R1, 325 amino acids; SIGN-R3, 237
amino acids; SIGN-R4, 208 amino acids), but SIGN-R2 gene only
encodes a CRD without a cytosolic domain and a transmembrane
domain (SIGN-R2, 178 amino acids) [62]. Amino acid sequence
similarities between the CRD of human DC-SIGN and the murine
homologues are 69% for SIGN-R1, 65% for SIGN-R2, 68% for SIGN-R3,
and 70% for SIGN-R4 [62].

SIGN-R1, a murine homologous transmembrane of the DC-SIGN,
is expressed by splenic marginal zone macrophages and peritoneal
macrophages [53,57]. Similar to DC-SIGN, SIGN-R1 is essential for
the recognition and clearance of Streptococcus pneumoniae-derived
capsular PSs. Moreover, it can also recognize C. albicans,
M. tuberculosis, S. pneumoniae CPS, HIV, and yeast derived zymosan
particles in a mannose inhibitable manner [57]. SIGN-R1 directly
binds to Clq and dominantly regulates the immunoglobulin-
independent classical complement pathway for C3 deposition of
blood borne S. pneumoniae [63]. In SIGN-R1 deficient mice, C3
deposition is abolished and innate resistance against pneumococci
is reduced [63,64]. Also, SIGN-R1 interacts specifically with 2,6
sialylated Fc fragments of immunoglobulins, resulting in the anti-
inflammatory activity of intravenous immunoglobulin, which has
been widely used to treat autoimmune diseases including immune
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Table 2

A summary of the C-type lectin receptors dealt with in this review

Species

Ligands Pathogens

Expressed cell types

Lectin

Mouse Plant

Human

Yeast, bacteria, HIV", C. albicans, L. donovani, P.

Mannose, Fucose, N-acetyl glucosamine,

Sulphated sugar

Mg?, DC subset, Lymphatic and hepatic

endothelium

MR

carinii, Klebsiella pneumonia, Trypanosoma cruzi,
M. tuberculosis, capsular polysaccharides of S.

pneumoniae

HIV, Mycobacterium tuberculosis, C. albicans,

Mannose type CRD, Mannan, ManLam, ICAM-2,

ICAM-3

DC, dMg€, aMg¢

DC-SIGN

Leishmania mexicana, A. fumigatus, Helicobacter

pylori, Schistosoma mansoni

C. albicans, M. tuberculosis, S. pneumoniae, CPS,

HIV, yeast-derived zymosan particles

Mannose type CRD, Dextran, ICAM-3

MZ Mg¢, pMg®

SIGN-R1

C. albicans, Saccharomyces cerevisiae,

B-glucan, T-cell ligand

DC, LC%, Mg, PMN"

Dectin-1

Coccidioides posadasii, Pneumocystis carinii

C. Albicans

Mannose type ligands, CD4/CD25+ T-cell ligand

s6SLex !

H: Mo, BJ, Activated CD4+ TX M: Mg, PMN, LC
Leukocyte

Dectin-2

Arenavirus, Hantavirus, Coronavirus, Filovirus,

Orthomyxovirus
HSV°, VvZVvP

L-selectin

sLe* ™ s6SLex
sLe*, s6SLe*

Platelets, Endothelium
Activated endothelium

P-selectin
E-selectin

Porphyromonas gingivalis
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thrombocytopenia, rheumatoid arthritis, and systemic lupus ery-
thematosus [65]. SIGN-R3 makes a unique contribution to the
protection of the host against bacterial infection such as
M. tuberculosis, but SIGN-R1 and SIGN-R5 do not share this func-
tion. Although both SIGN-R1 and SIGN-R3 recognize M. tuberculosis
and mycobacterial surface glycoconjugates, only SIGN-R3 which is
expressed in lung phagocytes can interact with M. tuberculosis via
an intracellular tyrosine-based motif that may induce inflamma-
tory cytokine production in collaboration with TLR2 [60].

1.6. MR and selectins

MR (CD206) is described in myeloid cells and functions as a viral
recognition receptor on the cell membrane for yeast, bacteria, HIV,
and a wide variety of pathogens, such as C. albicans, Leishmania
donovani, P. carinii, Klebsiella pneumonia, Trypanosoma cruzi,
M. tuberculosis [66—68] and capsular PSs of S. pneumoniae through
a mannose-type CRD and pathogen-associated high mannose
structures [69]. MR which is mainly expressed in immune cells
induces uptake and presents mannosylated antigens such as lip-
oarabinomannan on MHC class II of metallophilic macrophages,
resulting in influencing immune responses [70]. For instance, the
interaction between MR and hepatitis B virus (HBV) surface antigen
(HBsAg) enhances viral uptake by DCs, resulting in the impairment
in the function of DCs and the ineffective antiviral response of
chronic HBV [71]. The recognition of viral surface glycoproteins by
MR is also beneficial to influenza virus [72] and HIV [73] invasion
into host cells. In addition, MR is able to mediate the clearance of
endogenous inflammatory glycoproteins bearing ligands of the
mannose-type CRD [57]. The expression of MR is upregulated by
cytokines like IL-4, IL-13, and IL-10, but IFN induces a down-
regulatory effect to MR [58].

Selectins are cell adhesion molecules and have three groups,
including E-selectin (endothelial) and P-selectin (platelet) on
endothelium, and L-selectin (leukocyte) on leukocytes [74]. Selec-
tins play roles in leukocyte recruitment from the bloodstream into
sites of inflammation [55,74]. The recruitment of leukocytes pro-
ceeds initially by attachment leading to the rolling of leukocytes
along endothelial vasculature via selectin-carbohydrate interaction.
E-selectin (M.W. 115 kDa) is expressed by endothelial cells after
stimulation with activators like TNF-a, IL-1, or bacterial lipopoly-
saccharide [55]. These cytokines also upregulate the expression of
P-selectin (M.W. 140 kDa), which is expressed by endothelial cells
and platelets [55]. Also, P-selectin in released to the cell surface
from storage vesicles in endothelial cells and platelets minutes after
stimulation by a number of activators, such as thrombin or hista-
mine [75]. L-selectin (M.W. 90—110 kDa) is expressed by leukocytes
and aids in the homing of leukocytes. L-selectin has high expression
on naive T lymphocytes but, once T lymphocytes are activated, the
expression of L-selectin is low or lacking [45]. E-, P-, and L-selectin
are composed of an N-terminal C-type lectin CRD, an epidermal
growth factor-like subunit, a number of short consensus repeat
units, a membrane spanning region, and a C-terminal cytoplasmic
tail [76]. There is approximately 72% homology for analogous
selectin CRDs across species, and ~52% homology between
different selectins within a species [76].

1.6.1. P-type lectins

P-type lectins are intracellular transmembrane glycoproteins
with specificity for mannose-6-phosphate (M6P) to identify and
route lysosomal enzymes to the lysosomal compartment (MPR
signal) and they have two groups. One is the 43—46 kDa cation-
dependent M6P receptor (CD-MPR) which requires Ca®* for activ-
ity and contains single extracellular domain, followed by a single
transmembrane domain [47]. The other is the 275-300 kDa
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insulin-like growth factor II/cation-independent M6P receptor
(IGF-1I/CI-MPR) which does not require cation for activity and has a
large extracellular domain containing two high-affinity binding
sites [46]. The CRDs of P-lectins for M6P are located in the extra-
cellular domain of CD-MPR and in extracellular repeats 3 and 9
with high affinity for IGFII/CI-MPR [46]. They are similar both in size
and in sequence to the repeating units that consisted of short N-
terminal extracellular domain and C-terminal cytoplasmic tail [77].
Their function is the intracellular targeting of lysosomal enzymes
(lysosomal hydrolases) in the trans-Golgi network vertebrate ani-
mals and delivering them to prelysosomal compartments [78].
Also, the C-terminal cytoplasmic tail of the receptor which targets
amino acid sequence plays a role in recognizing signal for transport
to the endosomal compartment [47]. IGF-1I/CI-MPR has the capacity
for endocytosis of ligands from the cell surface and serves to turn
over IGF by endocytosis, but not CD-MPR [47,78].

1.6.2. S-lectins

S-lectins, galectins (from 1 to 14), consist of globular galectin-
type CRDs which are specific for p-galactoside ligands and have
conserved cysteine residues [51]. They are found predominantly in
mammals, but not in plants [46]. S-lectins have a relatively simple
structure and share a highly homologous domain named the S-
carbohydrate recognition domain (S-CRD) [46]. S-lectins mostly
contain multiple sugar-binding sites, as the presence of two type of
S-CRD in a single polypeptide or its dimer [51]. The function of S-
lectins may be to crosslink N-acetyllactosamine-containing struc-
tures found at cell surfaces or in the extracellular matrix [79]. S-
Lectins are conserved in unrelated organisms including frogs, birds,
and mammals, meaning that f-galactoside binding to lectin may be
important biologically [47]. Mammalian S-lectins are conserved in
eight residues of the S-CRDs and involved in growth regulation, cell
adhesion, cell migration, and immune responses [47]. For example,
galectin-1 mediates cell adhesion and apoptosis, and regulates
cellular proliferation. Galectin-3 mediates cell adhesion, regulates
inflammation, pre-mRNA splicing, and protects against induced
apoptosis. Galectin-4 and galectin-6 have a function in cell—cell
and cell-extracellular matrix crosslinking and galectin-5 is
involved in maturation and erythrocyte adhesion [46,47].

1.6.3. I-type lectins

I-type lectins are members of the immunoglobulin (Ig) super-
family [46]. They share the structural motif, the Ig fold, with Ig-like
domains consisted of similar two planes of B-pleated sheets [80].
The B-sheets are established about 70—110 amino acids, cross-
linked by a disulfide bond and contain several hydrogen-bonded
antiparallel chains [51]. I-type lectins are classified into two do-
mains according to the number and arrangement of B-strands
present in the domains [81]. One is the amino terminal, extra-
cellular domain, which is similar to the variable region (V-type
domain) of IgG and is necessary for sialic acid-dependent binding
[81]. The other is the constant region (C-type domain) of IgG that
has various forms from 1 to 16 [46]. I-type lectins function as not
only cell adhesion molecules but also growth factor receptors and
extracellular matrix molecules [47]. The major subclasses of I-type
lectins are the sialic acid-binding immunoglobulin superfamily
lectins (Siglecs) which contain an homologous N-terminal V-type
domain with the sialic acid binding site and variable numbers of
C-type domains [46]. V-type domain and adjacent C-type domains
of Siglecs have conserved cysteine residues, resulting in formation
of conventional intrasheet and interdomain disulfide bonds [81].
The C-terminal cytoplasmic tail of most Siglecs has immunor-
eceptor tyrosine-based motifs in the intracellular domain for
signaling events [81]. Sialoadhesin found on the surface of mac-
rophages is a member of the Siglecs family [46]. It contains a V-

type domain and 16 C-type domains [51]. The N-terminal V-type
domain of sialoadhesin enables binding of sialic acid in the ligands
of neutrophils, monocytes, NK cells, B cells, and cytotoxic T cells
with sialoadhesin [47].

2. Animal lectins: potential receptors for GPs

The diverse roles of botanical PSs have been reported. The
antitumor effect of botanical PSs was first known more than 100
years ago when it was found that PSs could alleviate cancer in
cancer patients [82]. For example, lentinan from Lentinus edodes
and schizophyllan from Schizophyllum commune have antitumor
activities and have been used clinically for cancer therapy [35].
Through several experiments, it was suggested that the antitumor
effects of botanical PSs might be due to potentiation of the response
of precursor T cells and macrophages to cytokines produced by
lymphocytes after specific recognition of tumor cells [83]. Also,
botanical PSs of mushroom are known to stimulate natural killer
cells, T cells, B cells, and macrophage-dependent immune system
responses [84]. In addition, arabinogalactans of botanical PSs
possess complement fixation activity and induce chemotaxis of
human macrophages, T cells, and NK cells [85].

Although the roles of botanical PSs have been continuously
identified, the mechanism of action is not clear yet, because the
receptors of botanical PSs remain unknown. However, many sci-
entists have proposed that various pattern recognition receptors
(PRRs) might be receptors for botanical PSs. For example, Shao et al
[86] suggested that the receptor of PS from the roots of Astragalus
membranaceus, a medicinal herb, might be MR, TLR4, B-glucan re-
ceptor, etc. Schepetkin and Quinn [87] also introduced PRRs
including TLR4, MR, and dectin-1 as potential receptors of PS
polymers. Especially, it was reported that specific glycans of
botanical PSs act as immune stimulating agents and effective T cell
immune adjuvants [88,89]. Therefore, it was suggested that animal
lectins are strong candidates for receptors of botanical PSs among
various PRRs, because animal lectins are specialized in recognizing
various PSs [90].

With extensive research for GPs, the roles and chemical
composition of GPs have gradually been discovered. For instance,
the GPs of P. ginseng, the most common ginseng, are composed of
sugars including mannose of 1.2~2.8% by weight, glucose of
64.1~82.8% by weight, galactose of 10.0~26.6% by weight, and
arabinose of 0.6 ~5.4% by weight [91]. In addition, CVT-E002, an
aqueous extract of the roots of North American ginseng, is
composed of 80% poly-furanosyl-pyranosyl-saccharides including
rhamnose, glucose, galacturonic acid, galactose, and arabinose [7].
Therefore, some of the animal lectins might recognize these glycan
structures of GPs, because there are many animal lectins to recog-
nize glycan structures of galactose, glucose, rhamnose, and
mannose [47—49,51,57,58,69,92]. This could be speculated from the
extensive research of specific receptors for botanical PSs in the
above section. In particular, clustering of animal lectins might
enhance the recognition of GPs, since clustering of simple binding
sites in oligomers of the animal lectin polypeptides dramatically
increases the affinity for diverse PS structures [93]. For example,
Byeon et al [95] expected dectin-1 as a receptor of Red ginseng
acidic PS, which are known to interact with PS fractions such as -
glucan and zymosan [94,95].

3. Concluding remarks

GPs which are isolated from a variety of traditional medicinal
ginsengs involved in various innate immune responses, such as the
production of cytokines and maturation of DCs in vivo and in vitro,
show potential to be immunomodulators with wide applications
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[23—25]. In addition, most of them are relatively nontoxic and do
not cause significant side effects, which are major problems of
immunomodulatory bacterial PSs and synthetic compounds. Thus,
GPs are becoming ideal candidates for therapeutics for collagen-
induced arthritis, inflammation, and inflammatory-related dis-
eases like tumors, atherosclerosis, and so on [3,27,28,32,36].
Although the roles of GPs are being continuously identified, the
detailed mechanisms of actions are not clear yet, because the re-
ceptors of GPs remain largely unknown. Therefore, it is tempting to
speculate that animal lectins could be strong candidates of re-
ceptors for GPs. To prove this possibility, extensive researches for
the specific structures of GPs and the interaction between GPs and
animal lectins is required in the near future. By unraveling re-
ceptors of GPs in vivo, it is possible to specifically understand the
detailed mechanism for the immunological activities of GPs in the
immune system, giving insights into the development of GPs as
therapeutic biomaterials for many immunological diseases.
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