DOI QR코드

DOI QR Code

Growth Analysis of Chlamydomonas reinhardtii in Photoautotrophic Culture with Microdroplet Photobioreactor System

미세액적 광생물반응기를 활용한 광독립영양배양에서 Chlamydomonas reinhardtii의 성장성 분석

  • Sung, Young Joon (Department of Chemical and Biological Engineering, Korea University) ;
  • Kwak, Ho Seok (Department of Chemical and Biological Engineering, Korea University) ;
  • Choi, Hong Il (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Jaoon Young Hwan (Department of Chemical and Biological Engineering, Korea University) ;
  • Sim, Sang Jun (Department of Chemical and Biological Engineering, Korea University)
  • 성영준 (고려대학교 화공생명공학과) ;
  • 곽호석 (고려대학교 화공생명공학과) ;
  • 최홍일 (고려대학교 화공생명공학과) ;
  • 김영환 (고려대학교 화공생명공학과) ;
  • 심상준 (고려대학교 화공생명공학과)
  • Received : 2016.09.02
  • Accepted : 2016.12.05
  • Published : 2017.02.01

Abstract

Recently, microalgae which can produce high-value products have attracted increasing attention for biological conversion of $CO_2$. However, low photosynthetic efficiency and productivity have limited the practical use of microalgae. Thus, we developed microdroplet photobioreactor for the analysis of photoautotrophic growth of model alga, Chlamydomonas reinhardtii. $CO_2$ transfer rate was increased by integrating micropillar arrays and adjusting height of microchamber. These results were identified by change of cell growth rate and fluorescence intensity. Lastly, the photoautotrophic growth kinetics of C. reinhardtii in microdroplet photobioreactor were investigated under different $CO_2$ concentrations and light intensities for 96 hours. As a result, microdroplet photobioreactor was efficient platform for isolation and rapid evaluation of microalgal strains which have enhanced productivity of high-value products and growth performance.

최근 고부가가치 산물의 생산이 가능한 미세조류는 이산화탄소의 생물학적 전환 측면에서 많은 주목을 받고 있다. 그렇지만 미세조류 종 자체가 지닌 낮은 광합성 효율 및 생산성의 한계는 미세조류를 활용한 공정의 상업화를 막는 장애요인이다. 따라서 본 연구에서는 대표 미세조류 Chlamydomonas reinhardtii의 광독립영양 성장성 분석을 위한 미세액적 광생물반응기를 개발하였다. PDMS 기반의 미세유체 칩 내에 미세기둥을 배열하고 미세챔버의 높이를 조절하여 미세액적 내 이산화탄소의 전달속도를 증가시켰으며, 이는 세포 성장성과 형광 세기 변화를 통해 확인하였다. 마지막으로 미세액적 광생물반응기를 활용하여 다양한 이산화탄소 농도 및 광량 조건에서 C. reinhardtii의 광독립영양배양에서 성장성을 96 시간동안 관찰하고 분석하였다. 본 연구 결과를 통해 미세액적 광생물반응기는 성장성 및 유용물질 생산성이 우수한 미세조류 종을 빠르게 분석하고 쉽게 분리할 수 있는 효율적인 플랫폼임을 입증하였다.

Keywords

References

  1. Chisti, Y., "Biodiesel from Microalgae Beats Bioethanol," Trends Biotechnol., 26(3), 126-131(2008). https://doi.org/10.1016/j.tibtech.2007.12.002
  2. Christenson, L. and Sims, R., "Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts," Biotechnol. Adv., 29(6), 686-702(2011). https://doi.org/10.1016/j.biotechadv.2011.05.015
  3. Mata, T. M., Martins, A. A. and Caetano, N. S., "Microalgae for Biodiesel Production and Other Applications: A Review," Renewable Sustainable Energy Rev., 14(1), 217-232(2010). https://doi.org/10.1016/j.rser.2009.07.020
  4. Pauly, M. and Keegstra, K., "Cell-wall Carbohydrates and Their Modification as a Resource for Biofuels," Plant J., 54(4), 559-568(2008). https://doi.org/10.1111/j.1365-313X.2008.03463.x
  5. Pienkos, P. T. and Darzins, A., "The Promise and Challenges of Microalgal-Derived Biofuels," Biofuels, Bioprod. Biorefin., 3(4), 431-440(2009). https://doi.org/10.1002/bbb.159
  6. Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., Borowitzka, M. A. and Hankamer, B., "An Economic and Technical Evaluation of Microalgal Biofuels," Nat. Biotechnol., 28(2), 126-128(2010). https://doi.org/10.1038/nbt0210-126
  7. Weyer, K. M., Bush, D. R., Darzins, A. and Willson, B. D., "Theoretical Maximum Algal Oil Production," Bioenergy Res., 3(2), 204-213(2010). https://doi.org/10.1007/s12155-009-9046-x
  8. Park, J. Y., Lee, G. A., Kim, K. Y., Kim, K. Y., Choi, S. A., Jeong, M. J. and Oh, Y. K., "Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica," Korean Chem. Eng. Res., 52(1), 88-91(2014). https://doi.org/10.9713/kcer.2014.52.1.88
  9. Lim, H. S., Kim, J. Y. H., Kwak, H. S. and Sim, S. J., "Integrated Microfluidic Platform for Multiple Processes from Microalgal Culture to Lipid Extraction," Anal. Chem., 86(17), 8585-8592(2014). https://doi.org/10.1021/ac502324c
  10. Dewan, A., Kim, J., McLean, R. H., Vanapalli, S. A. and Karim, M. N., "Growth Kinetics of Microalgae in Microfluidic Static Droplet Arrays," Biotechnol. Bioeng., 109(12), 2987-2996(2012). https://doi.org/10.1002/bit.24568
  11. Fair, R. B., "Digital Microfluidics: is a True Lab-on-a-chip Possible?," Microfluid. Nanofluid., 3(3), 245-281(2007). https://doi.org/10.1007/s10404-007-0161-8
  12. Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. and Weitz, D. A., "Electric Control of Droplets in Microfluidic Devices," Angew. Chem., Int. Ed., 45(16), 2556-2560(2006). https://doi.org/10.1002/anie.200503540
  13. Schneider, T., Kreutz, J. and Chiu, D. T., "The Potential Impact of Droplet Microfluidics in Biology," Anal. Chem., 85(7), 3476-3482(2013). https://doi.org/10.1021/ac400257c
  14. Pan, J., Stephenson, A. L., Kazamia, E., Huck, W. T., Dennis, J. S., Smith, A. G. and Abell, C., "Quantitative Tracking of the Growth of Individual Algal Cells in Microdroplet Compartments," Integr. Biol., 3(10), 1043-1051(2011). https://doi.org/10.1039/c1ib00033k
  15. Chen, F., "High Cell Density Culture of Microalgae in Heterotrophic Growth," Trends Biotechnol., 14(11), 421-426(1996). https://doi.org/10.1016/0167-7799(96)10060-3
  16. Morales-Sanchez, D., Tinoco-Valencia, R., Kyndt, J. and Martinez, A., "Heterotrophic Growth of Neochloris oleoabundans Using Glucose as a Carbon Source," Biotechnol. Biofuels, 6(100), 1-12 (2013). https://doi.org/10.1186/1754-6834-6-1
  17. Mata, A., Fleischman, A. and Roy, S., "Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems," Biomed. Microdevices, 7(4), 281-293(2005). https://doi.org/10.1007/s10544-005-6070-2
  18. van Poll, M. L., Zhou, F., Ramstedt, M., Hu, L. and Huck, W. T. S., "A Self-Assembly Approach to Chemical Micropatterning of Poly(dimethylsiloxane)," Angew. Chem., Int. Ed., 46(35), 6634-6637(2007). https://doi.org/10.1002/anie.200702286
  19. Zhou, J., Ellis, A. V. and Voelcker, N. H., "Recent Developments in PDMS Surface Modification for Microfluidic Devices," Electrophoresis, 31(1), 2-16(2010). https://doi.org/10.1002/elps.200900475
  20. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E., "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng., 3(1), 335-373(2001). https://doi.org/10.1146/annurev.bioeng.3.1.335
  21. Chu, C.-S. and Lo, Y.-L., "Fiber-Optic Carbon Dioxide Sensor Based on Fluorinated Xerogels Doped with HPTS," Sens. Actuators, B, 129(1), 120-125(2008). https://doi.org/10.1016/j.snb.2007.07.082
  22. Grima, E. M., Sevilla, J. F., Perez, J. S. and Camacho, F. G., "A Study on Simultaneous Photolimitation and Photoinhibition in Dense Microalgal Cultures Taking into Account Incident and Averaged Irradiances," J. Biotechnol., 45(1), 59-69(1996). https://doi.org/10.1016/0168-1656(95)00144-1
  23. Vonshak, A., Torzillo, G. and Tomaseli, L., "Use of Chlorophyll Fluorescence to Estimate the Effect of Photoinhibition in Outdoor Cultures of Spirulina platensis," J. Appl. Phycol., 6(1), 31-34(1994). https://doi.org/10.1007/BF02185901

Cited by

  1. 이산화탄소 농도 및 유속에 따른 하천 내 미세조류의 이산화탄소 고정 효과 vol.20, pp.4, 2018, https://doi.org/10.17663/jwr.2018.20.4.363