DOI QR코드

DOI QR Code

Characteristics of Byproduct After NaBH4 Hydrolysis Reaction Using Unsupported Catalyst

비담지 촉매를 이용한 NaBH4 가수분해반응에서 부산물의 특성

  • Lee, Hye-Ri (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Dae-Han (Department of Chemical Engineering, Sunchon National University) ;
  • Ju, Won (Department of Chemical Engineering, Sunchon National University) ;
  • Na, Il-Chai (CNL Energy Co) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2016.09.03
  • Accepted : 2016.09.27
  • Published : 2017.02.01

Abstract

Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for UAV PEMFC (Unmaned Aerial Vehicle Proton Exchange Membrane Fuel Cells). In order to use for UAV, the weight and volume of byproduct should be small after $NaBH_4$ hydrolysis reaction. Therefore, the weight and volume of byproduct were studied after $NaBH_4$ hydrolysis reaction using unsupported catalyst. The effect of catalyst type, concentration of $NaBH_4$, concentration of NaOH and thickness of catalyst pack on the weight and volume of byproduct were studied. Most of byproduct was $NaB(OH)_4$ and superficial volume of byproduct increased due to foam evolved from byproduct. The weight and volume of byproduct were not affected by concentration of NaOH used stabilizer. The weight of byproduct decreased as concentration of $NaBH_4$ solution increased, but maximum volume of byproduct obtained at 23 wt% of $NaBH_4$. Suitable defoaming agent reduced the volume of byproduct.

무인항공기용 고분자전해질 연료전지의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 무인항공기용으로 이용하기 위해서는 $NaBH_4$ 가수분해 반응 후 부산물의 무게와 부피가 작아야 한다. 그래서 본 연구에서는 비담지 촉매를 사용한 $NaBH_4$ 가수분해 반응 후 부산물의 무게와 부피에 대해 연구하였다. 촉매 형태, $NaBH_4$ 농도, NaOH 농도, 촉매팩 두께 등이 부산물의 무게와 부피에 미치는 영향에 대해 연구하였다. 본 실험 조건에서 발생한 부산물은 대부분 $NaB(OH)_4$였고, 거품이 발생하여 부피가 증가하였다. 안정화제인 NaOH 농도는 부산물의 무게와 부피에 별 영향을 주지 않았다. $NaBH_4$ 농도가 증가하면 부산물 무게가 감소하였으나, $NaBH_4$ 농도 23 wt%에서 최고 부피를 나타냈다. 소포제를 이용해 부산물의 부피를 감소시킬 수 있었다.

Keywords

References

  1. Bradley, T. H., Moffitt, B. A., Mavris, D. N. and Parekh, D. E., "Development and Experimental Characterization of a Fuel Cell Powered Aircraft," J. Power Sources, 171, 793-801(2007). https://doi.org/10.1016/j.jpowsour.2007.06.215
  2. Liu, B. H. and Li, Z. P., "A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction," J. Power Sources, 187, 527-534(2009). https://doi.org/10.1016/j.jpowsour.2008.11.032
  3. Fernandes, R., Patel, N., Miotello, A. and Filippi, M., "Studies on Catalytic Behavior of Co-Ni-B in Hydrogen Production by Hydrolysis of $NaBH_4$," Journal of Molecular Catalysis A: chemical, 298, 1-6(2009). https://doi.org/10.1016/j.molcata.2008.09.014
  4. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R. and Korthari, D. C., "Stability, Durability, and Reusability Studies on Transition Metal-doped Co-B Alloy Catalysts for Hydrogen Production," Int. J. Hydrogen Energy, 36, 13379-13391(2011). https://doi.org/10.1016/j.ijhydene.2011.08.021
  5. Fernandes, R., Patel, N. and Miotello, A., "Hydrogen Generation by Hydrolysis of Alkaline $NaBH_4$ Solution with Cr-promoted Co-B Amorphous Catalyst," Applied Catalysis B: Environmental., 92, 68-74(2009). https://doi.org/10.1016/j.apcatb.2009.07.019
  6. Fernandes, R., Patel, N. and Miotello, A., "Efficient Catalytic Properties of Co-Ni-P-B Catalyst Powders for Hydrogen Generation by Hydrolysis of Alkaline Solution of $NaBH_4$," Int. J. Hydrogen Energy, 34, 2893-2900(2009). https://doi.org/10.1016/j.ijhydene.2009.02.007
  7. Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from $NaBH_4$," Korean J. Chem. Eng., 27(2), 474-479(2010). https://doi.org/10.1007/s11814-010-0072-3
  8. Demirci, U. B. and Garin, F., "Ru-based Bimetallic Alloys for Hydrogen Generation by Hydrolysis of Sodium Tetrahydroborate," J. Alloys and Compounds, 463, 107-111(2008). https://doi.org/10.1016/j.jallcom.2007.08.077
  9. Hwang, B. C., Jo, J. Y., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Hydrogen Yield of $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 49(5), 516-520(2011). https://doi.org/10.9713/kcer.2011.49.5.516
  10. Ye, W., Zhang, H., Xu, D., Ma, L. and Yi, B., "Hydrogen Generation Utilizing Alkaline Sodium Borohydride Solution and Supported Cobalt Catalyst," J. Power Sources, 164, 544-548(2007). https://doi.org/10.1016/j.jpowsour.2006.09.114
  11. Gilson, P., Monteleone, G. and Prosini, P. P., "Hydrogen Production from Solid Sodium Borohydride," Int. J. Hydrogen Energy, 34, 929-937(2009). https://doi.org/10.1016/j.ijhydene.2008.09.105
  12. Sim, W. J., Jo, J. Y., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Stability of $NaBH_4$ Solution During Storage Process," Korean Chem. Eng. Res, 48(3), 322-326(2010).
  13. Hwang, B. C., Cho, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Durability of Co-P-B/Cu Catalyst for $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 50(4), 627-631(2012). https://doi.org/10.9713/kcer.2012.50.4.627
  14. Hwang, B. C., Jo, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "$NaBH_4$ Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy," Korean Chem. Eng. Res., 51(1), 35-41 (2013). https://doi.org/10.9713/kcer.2013.51.1.35
  15. Lee, H. R., Na, I. C. and Park, K. P., "Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of $NaBH_4$ Solutions," Korean Chem. Eng. Res., in print.