DOI QR코드

DOI QR Code

Separation of Sulfuric Acid from Sulfuric Acid/Glucose Solution by Electrodialysis

황산/글루코스 용액으로부터 전기투석에 의한 황산 분리

  • Received : 2016.07.25
  • Accepted : 2016.10.13
  • Published : 2017.02.01

Abstract

Recovery of sulfuric acid is very important after biomass converted to sugar by acid hydrolysis. In this work, the separation of sulfuric acid from sulfuric acid/glucose solution was studied by electrodiaysis. Three chamber method, which requires both anion membrane and cation membrane, is the most commonly used in the electrodialysis process, but two chamber method using only an anion membrane was the focus of this study. Sulfuric acid was perfectly separated from a mixture of 10~30 wt% glucose and 1~3 M sulfuric acid by electrodialysis using two chamber method. The separation rate of sulfuric acid lineary increased with higher current density when the affect of diffusion and convection of the membrane was small. Without electric energy, 45% of sulfuric acid was separated by diffusion and convection only.

황산에 의한 바이오매스의 당화 후 황산의 회수는 매우 중요하다. 본 연구에서는 전기투석 방법에 의해 황산과 글루코스 혼합용액으로부터 황산을 분리하는 연구를 하였다. 전기투석은 음이온막과 양이온막을 사용한 3실 방식이 일반적인데 본 연구에서는 음이온막 만을 사용한 2실 방식을 실험했다. 글루코스 10~30% 황산농도 1~3 M 농도 범위의 용액에서 2실 방식의 전기투석으로 황산을 완전 분리할 수 있었다. 실험한 3종류의 음이온 막 중에서 확산과 대류의 영향이 작은 음이온 막에서는 전류밀도에 비례해 황산분리 속도가 증가하였다. 전기를 가하지 않고 확산과 대류에 의해 황산분리 45%를 달성할 수 있었다.

Keywords

References

  1. Alian Vertes, "Biomass to Biofuels", John Wiley & Sons, New York(2014).
  2. Nanguneri, S. R. and Hester, R. D., "Acid/Sugar Separation Using ion Exclusion Resins: Aprocess Analysis and Design," Sep. Sci. Technol., 25, 1829-1842(1990). https://doi.org/10.1080/01496399008050427
  3. Park, J. H. and Kim, J. S., "Two-step Acid Hydrolysis Method for Producing Fermentable Sugar from Lignocellulosic Biomass," Korean Chem. Eng. Res., 54(1), 1-5(2016). https://doi.org/10.9713/kcer.2016.54.1.1
  4. Ladisch, M. R., "Bioseparation Engineering," New York: John Wiley & Sons, Inc(2001).
  5. Xie, Y., Phelps, D., Lee, C. H., Sedlak, M., Ho, N. and Wang, N. H. L., "Comparison of Two Adsorbents for Sugar Recovery from Biomass Hydrolyzate," Ind. Eng. Chem. Res, 44, 6816-6823(2005). https://doi.org/10.1021/ie049079x
  6. Wickramasinghe, S. R. and Grzenia, D. L., "Adsorptive Membranes and Resins for Acetic Acid Removal from Biomass Hydrolysates," Desalination, 234, 144-151(2008). https://doi.org/10.1016/j.desal.2007.09.080
  7. Nam, H. G., Jo, S. H. and Mun, S., "Comparison of Amberchrom-CG161C and Dowex99 as the Adsorbent of a Four-zone Simulated Moving Bed Process for Removal of Acetic Acid from Biomass Hydrolyzate," Process Biochem., 46, 2044-2053(2011). https://doi.org/10.1016/j.procbio.2011.08.004
  8. Hartmann, B. M., Kaar, W., Yoo, I. K., Lua, L. H. L., Falconer, R. J. and Middelberg, A. P. J., "The Chromatography-free Release, Isolation and Purification of Recombinant Peptide for Fibril Selfassembly," Biotechnol Bioeng, 104, 973-985(2009). https://doi.org/10.1002/bit.22447
  9. Han, M. G., Jeon, K. Y., Mun, S. and Kim, J. H., "Development of a Micelle-fractional Precipitation Hybrid Process for the Pre-purification of Paclitaxel From Plant Cell Cultures," Process Biochem, 45, 1368-1374(2010). https://doi.org/10.1016/j.procbio.2010.05.010
  10. Jeon, K. Y. and Kim, J. H., "Improvement of Fractional Precipitation Process for Prepurification of Paclitaxel," Process Biochem, 44, 736-741(2009). https://doi.org/10.1016/j.procbio.2009.03.007
  11. Oh, H. J., Jang, H. R., Jung, K. Y. and Kim, J. H., "Evaluation of Adsorbents for Separation and Purification of Paclitaxel from Plant Cell Cultures," Process Biochem, 47, 331-334(2012). https://doi.org/10.1016/j.procbio.2011.11.004
  12. Marti-Calatayud, M. C., Buzzi, D. C., Garcia-Gabaldon, M., Ortega, E., Bernardes, A. M., Tenorio, J. A. S. and Perez-Herranz, V., "Sulfuric Acid Recovery from Acid Mine Drainage by Means of Electrodialysis," Desalination, 343, 120-127(2014). https://doi.org/10.1016/j.desal.2013.11.031
  13. Abla, C. and Rachid, D., "Purification of $H_2SO_4$ of Pickling Bath Contaminated by Fe(II) Ions Using Electrodialysis Process," Energy Procedia, 74, 1418-1433(2015). https://doi.org/10.1016/j.egypro.2015.07.789
  14. Rohman, F. S., Othman, M. R. and Aziz, N., "Modeling of Batch Electrodialysis for Hydrochloric Acid Recovery," Chemical Engineering Journal, 162, 466-479(2010). https://doi.org/10.1016/j.cej.2010.05.030
  15. Dodgson, K. S., "Determination of Inorganic Sulphate in Studies on the Enzymic and Non-enzymic Hydrolysis of Carbohydrate and Other Sulphate Esters," Biochem. J., 78, 312(1961). https://doi.org/10.1042/bj0780312
  16. Wang, X., Wang, Y., Zhang, X., Feng, H. and Xu, T., "In-situ Combination of Fermentation and Electrodialysis with Bipolar Membranes for the Production of Lactic Acid: Continuous Operation," Bioresource Technology, 147, 442-448(2013). https://doi.org/10.1016/j.biortech.2013.08.045