DOI QR코드

DOI QR Code

알킬렌디아미노알킬-비스-포스폰산과 비스-디메틸아미노메틸 포스핀산으로 처리된 중질섬유판의 연소가스 발생

Combustion Gas-emission of Medium Density Fibreboard (MDF) Treated with Alkylenediaminialkyl-bis-phosphonic Acids and Bis-(dimethylaminomethyl) Phosphinic Acid

  • 박명호 (강원대학교 기계공학과) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Park, Myung-Ho (Dept. of Mechanical Engineering, Kangwon National University) ;
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 투고 : 2016.12.13
  • 심사 : 2016.12.31
  • 발행 : 2017.02.10

초록

이 연구에서는 피페라지노메틸-비스-포스폰산(PIPEABP), 메틸피페라지노메틸-비스-포스폰산(MPIPEABP), N,N-디메틸렌디아미노메틸-비스-포스폰산(MDEDAP) 그리고 비스-디메틸아미노메틸 포스핀산(DMDAP)의 화학 첨가제로 처리된 중질섬유판(MDF)의 연소가스 발생을 시험하였다. 15 wt%의 인-질소산류 첨가제 수용액으로 중질섬유판에 붓으로 3회 칠하여 실온에서 건조시킨 후, 콘칼로리미터(Conecalorimeter, ISO 5660-1, 2)를 이용하여 연소가스의 발생을 시험하였다. 그 결과, 인-질소산류 첨가제로 처리한 시험편의 최대연기발생률($SPR_{peak}$)은 무처리 시험편에 비교하여 18.5~41.5%로 낮게 나타내었다. 그러나 인-질소산류 첨가제로 처리한 시험편에 대한 최대일산화탄소 생성($CO_{peak}$), (6.7~24.2)%은 공시험편보다 높게 나타났다. 또한 최대이산화탄소 발생($CO_{2peak}$), (4.2~24.4)%은 공시험편보다 낮게 나타났다. 반면에 $O_2$의 최대결핍률은 사람에게 치명적일 수 있는 수준인 15%보다 훨씬 높으므로 그로 인한 위험성은 피할 수 있었다. 결론적으로 MDF에 인-질소산류로 처리한 시험편은 부분적으로 연소성이 억제되었다. 그러나 일산화탄소의 감소에는 부정적인 영향을 미쳤다.

This study demonstrated the emission of combustion gases of medium density fibreboard (MDF)s coated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP), or bis-(dimethylaminomethyl) phosphinic acid (DMDAP). Each MDFs were coated in three times with a brush with 15 wt% aqueous solution of the phosphorus-nitrogen acid additives. After the specimens were dried at room temperature, the emission of combustion gases was tested using a cone calorimeter (ISO 5660-1, 2). The peak smoke production rate ($SPR_{peak}$) of the specimens coated with phosphorus-nitrogen acids was 18.5 to 41.5%, which is lower than that of using the virgin plate. However, the production of peak carbon monoxide ($CO_{peak}$) was 6.7 to 24.2% higher than that of using the virgin plate. Also, the peak carbon dioxide ($CO_{2peak}$) was 4.2 to 24.4% lower than that of using virgin plate. While the peak oxygen depletion rate was much higher than the level of 15%, which can be fatal to humans and the resulting risk could thus be eliminated. Overall, the combustibility of coated specimens was partially suppressed, but showed a negative effect on the reduction of carbon monoxide.

키워드

참고문헌

  1. R. H. White and M. A. Dietenberger, Fire safety of wood construction. In: R. J. Ross (ed.), Wood Handbook: Wood as an Engineering Material, Ch. 18, USDA (2010).
  2. A. Ernst and J. D. Zibrak, Carbon monoxide poisoning, N. Engl. J. Med., 339, 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  3. R. Von Berg, Toxicology update, J. Appl. Toxicol., 19, 379-386 (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  4. B. G. King, High Concentration-short time exposures and toxicity, J. Ind. Hyg. Toxicol., 31, 365-375 (1949).
  5. U. C. Luft, Aviation Physiology: The Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
  6. V. Babrauskas, Development of the cone calorimeter - a bench-scale heat release rate apparatus based on oxygen consumption. In: S. J. Grayson and D. A. Smith (eds.) New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier Appied Science Publisher, London, UK (1986).
  7. M. M. Hirschler, Fire performance of organic polymers, thermal decomposition, and chemical composition, ACS Symp. Ser., 797, 293-306 (2001).
  8. Y. Chung and E. Jin, Synthesis of alkylenediaminoalkyl-bis-phosphonic acid derivatives, J. Korean Oil Chem. Soc., 30, 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  9. Y. Chung and E. Jin, Synthesis of dialkylaminoalkyl phosphonic acid and bis-(dialkylaminoalkyl)-phosphinic acid derivatives, Appl. Chem. Eng., 23, 383-387 (2012).
  10. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme retardant treated plyood, Polym. Degrad. Stab., 64, 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  11. S. Liodakis, D. Vorisis, and I. P. Agiovlasitis, Testing the retardancy effect of various inorganic chemicals on smoldering combustion of Pinus halepensisneedles, Thermochim. Acta, 444, 157-165 (2006). https://doi.org/10.1016/j.tca.2006.03.010
  12. F. Samyn, S. Bourbigot, S. Duquesne, and R. Delobel, Effect of zinc borate on the thermal degradation of ammonium polyphosphate, Thermochim. Acta, 456, 134-144 (2007). https://doi.org/10.1016/j.tca.2007.02.006
  13. M. Park and Y. Chung, Combustive properties of Pinus Rigida plates painted with alkylenediaminoalkyl-bis-phosphonic acid ($M^{2+}$), Fire Sci. Eng., 27, 28-34 (2014).
  14. ISO 5660-1, Reaction to fire tests - Heat release, smoke production and mass loss rate. Part 1: Heat release rate (cone calorimeter method), Geneva (2002).
  15. ISO 5660-2, Reaction to fire tests - Heat release, smoke production and mass loss rate. Part 2: Smoke production rate (dynamic measurement), Geneva (2002).
  16. R. Bergman, Drying and control of moisture content and dimensional changes, In: R. J. Ross (ed.), Wood Handbook-Wood as an Engineering Material, Ch. 13, USDA (2010).
  17. V. Babrauskas, SFPE Handbook of Fire Protection Engineering, 4th Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  18. M. J. Spearpoint and G. J. Quintiere, Predicting the burning of wood using an integral model, Combust. Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  19. S. Ishihara, Smoke and toxic gases produced during fire, Wood Res. Tech. Notes, 16, 49-62 (1981).
  20. M. M. Hirscher, Reduction of smoke formation from and flammability of thermoplastic polymers by metal oxides, Polymer, 25, 405-411 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  21. J. Zhang, D. D. Jiang, and C. A. Wilkie, Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay, Polym. Degrad. Stab., 91, 298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  22. G. Kimmerle, Aspects and methodology for the evaluation of toxicological parameters during fire exposure, J. Combust. Toxicol., 1, 4-51 (1974).
  23. A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat release of polymer composites in fire, Compos. A, 38, 1040-1054 (2005).
  24. OHSA, Carbon Monoxide Fact Sheet, U.S. Department of Labor, Occupational Safety and Health Administration (2002).
  25. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals. OSHA's Comments from January 19, 1989. Final Rule on Air Contaminants Project (2005).
  26. MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Health Topic, U.S. Department of Labor (2015).