DOI QR코드

DOI QR Code

IEEE 802.15.4e DSME 기반 산업용 무선 센서 네트워크에서의 전력소모 절감을 위한 분산 스케줄링 기법 연구

The IEEE 802.15.4e based Distributed Scheduling Mechanism for the Energy Efficiency of Industrial Wireless Sensor Networks

  • 이윤성 (부산대학교 컴퓨터공학과) ;
  • 정상화 (부산대학교 컴퓨터공학과)
  • 투고 : 2016.10.10
  • 심사 : 2016.11.29
  • 발행 : 2017.02.15

초록

최근 IoT 기술의 확산으로 인해 산업 무선 센서 네트워크 분야에서도 IoT 기술이 적용되고 있다. 특히 스마트 팩토리는 유연한 공정 변화 및 맞춤형 제조를 위해 제조 설비에 무선 통신 및 네트워크 기술을 적용하는 것으로 무선 노드의 이동과 빈번한 네트워크 변동에도 적응적으로 네트워킹을 지원하는 것이 중요하다. 대표적인 산업 무선 센서 네트워크 기술인 IEEE 802.15.4e는 TSCH와 DSME의 2가지 MAC 모드를 사용하고 있으며, 그 중 DSME는 네트워크 변동에 강한 저 지연 실시간 전송을 위한 기능을 제공하고 있다. 본 논문에서는 DSME에 기반한 분산 스케줄링 기법을 제안한 것으로 이동성이 높은 산업 무선 센서 네트워크에서 트래픽에 적응적으로 통신 슬롯을 할당하여 산업 무선 센서 네트워크의 시의성과 전송 신뢰성을 확보하고 있다. 제안 알고리즘은 Coordinator 노드의 Local queue의 길이와 Global queue의 길이를 비교하며, Slot stealing 기법에 기반한 Traffic-aware 분산 스케줄링을 수행한다. Slot stealing 기법을 통해 개별 통신 노드의 전송 기회를 효율적으로 보장하면서, Slot stealing을 통해 야기되는 충돌로 인한 성능 저하 및 재전송 문제를 극복하기 위해 GroupACK 기법 적용 및 CAP 구간에 재전송 예약 슬롯을 할당하였다. 이 논문에서는 제안 알고리즘을 TSCH, DSME, legacy IEEE 802.15.4 slotted CSMA/CA와 비교하였고, 다양한 이동성 실험에서 성능 우위를 확인하였다. 실험을 통해 30개 이상의 노드로 구성된 토폴로지에서는 전송 대역폭이 15% 이상 개선됨을 확인하였다. 또한, slotted CSMA/CA에 비해서는 약 40%, TSCH 및 DSME 표준기법에 비해서는 제안 알고리즘을 탑재한 DSME가 15%의 전력 소모 절감이 나타나는 것을 실험적으로 확인하였다.

The Internet of Things (IoT) technology is rapidly developing in recent years, and is applicable to various fields. A smart factory is one wherein all the components are organically connected to each other via a WSN, using an intelligent operating system and the IoT. A smart factory technology is used for flexible process automation and custom manufacturing, and hence needs adaptive network management for frequent network fluctuations. Moreover, ensuring the timeliness of the data collected through sensor nodes is crucial. In order to ensure network timeliness, the power consumption for information exchange increases. In this paper, we propose an IEEE 802.15.4e DSME-based distributed scheduling algorithm for mobility support, and we evaluate various performance metrics. The proposed algorithm adaptively assigns communication slots by analyzing the network traffic of each node, and improves the network reliability and timeliness. The experimental results indicate that the throughput of the DSME MAC protocol is better than the IEEE 802.15.4e TSCH and the legacy slotted CSMA/CA in large networks with more than 30 nodes. Also, the proposed algorithm improves the throughput by 15%, higher than other MACs including the original DSME. Experimentally, we confirm that the algorithm reduces power consumption by improving the availability of communication slots. The proposed algorithm improves the power consumption by 40%, higher than other MACs.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. 802.15.4-2006: IEEE Standard for Information technology, Local and metropolitan area networks, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), IEEE Std., 2006.
  2. 802.15.4e-2012: IEEE Standard for Local and metropolitan area networks-Part 15.4: Low-Rate Wireless Personal Area Networks (LRWPANs) Amendment 1: MAC sublayer, IEEE Std., 16 Apr. 2012.
  3. Wun-Cheol Jeong and Junhee Lee, "Performance Evaluation of IEEE 802.15.4e DSME MAC Protocol for Wireless Sensor Networks," IEEE ETSIoT 2012.
  4. Junhee Lee and Wun-Cheol Jeong, "Performance analysis of IEEE 802.15.4e DSME MAC protocol under WLAN interference," ICT Convergence (ICTC), 2012 International Conference on, Oct. 2012.
  5. Wen-Zhan Song, Renjie Huang, B. Shirazi and R. LaHusen, "TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks," IEEE PerCom, Mar. 2009.
  6. Zusheng Zhang, Fengqi Yu and Baoli Zhang, "A Depth-based TDMA Scheduling for Clustering Sensor Networks," International Conference on Frontier of Computer Science and Technology, 2009.
  7. Injong Rhee, Warrier, A, Jeongki Min, Lisong Xu, "DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks," Mobile Computing, IEEE Transaction on, 2009, Vol. 8, No. 10, pp. 1384-1396. https://doi.org/10.1109/TMC.2009.59
  8. S. Ahn, J. Cho, and S. An, "Slotted beacon scheduling using ZigBee Cskip mechanism," Proc. of the 2nd International Conference on Sensor Technologies and Applications (SENSORCOMM '08), pp. 103-108, Aug. 2008.
  9. L. W. Yeh, M. S. Pan, and Y. C. Tseng, "Two-way beacon scheduling in ZigBee tree-based wireless sensor networks," Proc. of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC '08), pp. 130-137, Jun. 2008.
  10. Hwakyung Lee, Sang-Hwa Chung, Ik-joo Jung, "An Improved Depth-Based TDMA Scheduling Algorithm for Industrial WSNs to Reduce Endto-end Delay," Journal of KIISE, Vol. 42, No. 4, pp. 530-540, 2015. 4. [Online]. Available: http://dx.doi.org/10.5626/JOK.2015.42.4.530
  11. M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia, "Traffic Aware Scheduling Algorithm for Reliable Low-Power Multi-Hop IEEE 802.15.4e Networks," 23rd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, Sep. 2012.
  12. Andrew Tinka, Thomas Watteyne, Kris Pister and Alexandre M. Bayen, "A Decentralized Scheduling Algorithm for Time Synchronized Channel Hopping," ICST Transactions on Mobile Communications and Computing.
  13. Anis Koubaa, Andre Cunha, Mario Alves, "A Time Division Beacon Scheduling Mechanism for IEEE 802.15.4/Zigbee Cluster-Tree Wireless Sensor Networks," Real-Time Systems, 2007. ECRTS '07. 19th Euromicro Conference on, Jul. 2007.
  14. E. Toscano and L. L. Bello, "Multichannel Superframe Scheduling for IEEE802.15.4 Industrial Wireless Sensor Networks," IEEE Trans. Industrial Informatics, Vol. 8, No. 2, pp. 337-350, 2012. https://doi.org/10.1109/TII.2011.2166773
  15. Scalable Network Technologies, Qualnet 6.1 [Online]. Available:http://web.scalable-networks.com/qualnet
  16. "Time-slot Relaying based Link Extension MAC Specification for the Low-Rate WPAN," Telecommunications Technology Association, 2013, TTAK.KO-06.0333