DOI QR코드

DOI QR Code

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho (Department of Electrical and Computer Engineering, Ajou University) ;
  • Park, Jin-Hyuk (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2016.08.04
  • Accepted : 2016.12.13
  • Published : 2017.03.20

Abstract

This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

Keywords

E1PWAX_2017_v17n2_323_f0001.png 이미지

Fig. 1. (a) BDC structure and (b) synchronous conduction mode(SCM) operation.

E1PWAX_2017_v17n2_323_f0002.png 이미지

Fig. 2. Zero-voltage switching (ZVS) BDC and clamp switch.

E1PWAX_2017_v17n2_323_f0003.png 이미지

Fig. 3. Key waveform of the buck operation.

E1PWAX_2017_v17n2_323_f0004.png 이미지

Fig. 4. Equivalent circuits of ZVS BDC during buck operation.

E1PWAX_2017_v17n2_323_f0005.png 이미지

Fig. 5. Key waveform of boost operation.

E1PWAX_2017_v17n2_323_f0006.png 이미지

Fig. 6. Equivalent circuits of the ZVS converter in boost mode.

E1PWAX_2017_v17n2_323_f0007.png 이미지

Fig. 7. Inductor current according to switching time.

E1PWAX_2017_v17n2_323_f0008.png 이미지

Fig. 8. Block diagram of PI the controller and system.

E1PWAX_2017_v17n2_323_f0009.png 이미지

Fig. 9. Block diagram of the proposed control algorithm.

E1PWAX_2017_v17n2_323_f0010.png 이미지

Fig. 10. Phase shift method of ZVS BDC.

E1PWAX_2017_v17n2_323_f0011.png 이미지

Fig. 11. Inductor current and gate signal of ZVS BDC.

E1PWAX_2017_v17n2_323_f0012.png 이미지

Fig. 12. Waveform of the proposed control algorithm in buck operation

E1PWAX_2017_v17n2_323_f0013.png 이미지

Fig. 13. ZVS of Stop within dead time (buck operation).

E1PWAX_2017_v17n2_323_f0014.png 이미지

Fig. 14. Waveform of the proposed control algorithm in boost operation

E1PWAX_2017_v17n2_323_f0015.png 이미지

Fig. 15. ZVS of Sbot within dead time (boost operation).

E1PWAX_2017_v17n2_323_f0016.png 이미지

Fig. 16. Experimental configuration of ZVS BDC.

E1PWAX_2017_v17n2_323_f0017.png 이미지

Fig. 17. Experimental results during buck operation.

E1PWAX_2017_v17n2_323_f0018.png 이미지

Fig. 18. Experimental results during boost operation.

E1PWAX_2017_v17n2_323_f0019.png 이미지

Fig. 19. Dynamic response during buck operation

E1PWAX_2017_v17n2_323_f0020.png 이미지

Fig. 20. Dynamic response during boost operation.

E1PWAX_2017_v17n2_323_f0021.png 이미지

Fig. 21. Loss breakdown chart.

E1PWAX_2017_v17n2_323_f0022.png 이미지

Fig. 22. Experimental efficiency graph

TABLE I PARAMETERS FOR THE SIMULATION

E1PWAX_2017_v17n2_323_t0001.png 이미지

TABLE II LOSS BREAKDOWN OF ZVS METHOD

E1PWAX_2017_v17n2_323_t0002.png 이미지

TABLE III EFFICIENCY COMPARISON OF ZVS METHOD

E1PWAX_2017_v17n2_323_t0003.png 이미지

References

  1. W.-J. Choi, K.-B. Lee, and G.-B. Joung, "Bidirectional soft switching three-phase interleaved DC-DC converter for a wide input voltage range," Transactions of the Korean Institute of Power Electronics (KIPE), Vol. 20, No. 4, pp. 313-320, Aug. 2015. https://doi.org/10.6113/TKPE.2015.20.4.313
  2. D.-K. Choi and K.-B. Lee, "Model-based predictive control for interleaved multi-phase DC/DC converters," Transactions of the Korean Institute of Power Electronics (KIPE), Vol. 19, No. 5, pp. 415-421, Oct. 2014. https://doi.org/10.6113/TKPE.2014.19.5.415
  3. C.-L. Nguyen, and H.-H. Lee, "Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity," Journal of Electrical Engineering & Technology, Vol. 9, No. 3, pp. 1080-1088, May. 2014. https://doi.org/10.5370/JEET.2014.9.3.1080
  4. M. Jain, M. Daniele, and P. K. Jain, "A bidirectional DC-DC converter topology for low power application," IEEE Trans. Power Electron., Vol. 15, No. 4, pp. 595-606, Jul. 2000. https://doi.org/10.1109/63.849029
  5. H. Li, F. Z. Peng, and J. S. Lawler, "A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices," IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 525-535, Mar. 2003. https://doi.org/10.1109/TIA.2003.808965
  6. T.-F. Wu, Y.-C. Chen, J.-G. Yang, and C.-L. Kuo, "Isolated bidirectional full-bridge DC-DC converter with a flyback snubber," IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1915-1922, Jul. 2010. https://doi.org/10.1109/TPEL.2010.2043542
  7. R.-J. Wai, C.-Y. Lin, and Y.-R. Chang, "High step-up bidirectional isolated converter with two input power sources," IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2629-2643, Jul. 2009. https://doi.org/10.1109/TIE.2009.2018427
  8. P. Das, S. A. Mousavi, and G. Moschopoulos, "Anaysis and design of a nonisolated bidirectional ZVS-PWM DC-DC converter with coupled inductor," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2630-2641, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2049863
  9. H. L. Do, "Nonisolated bidirectional zero-voltage -switching dc-dc converter," IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2563-2569, Sep. 2011. https://doi.org/10.1109/TPEL.2011.2111387
  10. W. Yu, H. Qian, and J.-H. Lai, "Design of high-efficiency bidirectional DC-DC converter and high-precision efficiency measurement," IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 650-658, Mar. 2010. https://doi.org/10.1109/TPEL.2009.2034265
  11. J.-G. Kim, S.-W. Park, Y.-H. Kim, Y.-C. Jung, and C.-Y. Won, "High Efficiency Bidirectional Soft Switching DC-DC Converter," International Power Electronics Conference (IPCE), pp. 2905-2911, 2010.
  12. D.-M. Joo, D.-H. Kim, and B.-K. Lee, "DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction," Journal of Electrical Engineering & Technology, Vol. 10, No. 6, pp. 2307-2314, Nov. 2015. https://doi.org/10.5370/JEET.2015.10.6.2307
  13. G.-Y. Jeong, S.-H. Kwon, and G.-Y. Park, "Simple High Efficiency Full-Bridge DC-DC Converter using a Series Resonant Capacitor," Journal of Electrical Engineering & Technology, Vol. 11, No. 1, pp. 100-108, Jan. 2016. https://doi.org/10.5370/JEET.2016.11.1.100
  14. J. Zhang, J.-S. Lai, R.-Y. Kim, and W. Yu, "High-Power Density Design of a Soft-Switching High-Power Bidirectional dc-dc Converter," IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1145-1153, Jul. 2007.
  15. M.-H. Ahn, J.-H. Park, and K.-B. Lee, "An optimal control method of clamp switch for ZVS bi-directional DC-DC converter," in Proc. IPEMC-ECCE Asia Conf., pp. 635-640, 2016.
  16. R.W. Erickson, Fundamentals of Power Electronics, Kluwer Academic, Chap. 8, 2001.