DOI QR코드

DOI QR Code

열전소자를 이용한 적외선 방사량 감소 기술에 관한 연구

Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator

  • 김훈 (연세대학교 기계공학과) ;
  • 김교민 (연세대학교 기계공학과) ;
  • 김우철 (연세대학교 기계공학과)
  • Kim, Hoon (School of Mechanical Engineering, Yonsei Univ.) ;
  • Kim, Kyomin (School of Mechanical Engineering, Yonsei Univ.) ;
  • Kim, Woochul (School of Mechanical Engineering, Yonsei Univ.)
  • 투고 : 2016.09.06
  • 심사 : 2016.11.27
  • 발행 : 2017.03.01

초록

열전소자를 이용하여 고온의 표면을 능동적으로 냉각하여 적외선 방사량을 줄이는 기술을 소개한다. 공력가열이나 자체 발열 등에 의한 고온 표면 환경을 구현하였고, 여기에 열전소자를 설치하여 냉각하였을 때의 표면 온도와 적외선 방사량을 상용 수치해석 소프트웨어를 사용하여 계산하였다. 이를 통해 특정 환경에서 열전냉각소자를 이용하여 고온 표면에 있어 외부 환경과 비교했을 때의 적외선 방사량 대비를 이론적으로 완전히 제거할 수 있음을 확인하였다.

We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

키워드

참고문헌

  1. Mahulikar, S. P., Sonawane, H. R. and Arvind Rao, G., 2007, "Infrared Signature Studies of Aerospace Vehicles," Progress in Aerospace Sciences, Vol. 43, No. 7-8, pp. 218-245. https://doi.org/10.1016/j.paerosci.2007.06.002
  2. Hale, J. S. and Woollam, J. A., 1999, "Prospects for IR Emissivity Control using Electrochromic Structures," Thin Solid Films, Vol. 339, No. 1-2, pp. 174- 180. https://doi.org/10.1016/S0040-6090(98)01335-2
  3. Spector, S. J., Astolfi, D. K., Doran, S. P. and Lyszczarz, T. M., 2001, "Infrared Frequency Selective Surfaces Fabricated Using Optical Lithography and Phase-shift Masks," Journal of Vacuum Science & Technology B, Vol. 19, No. 6, pp. 2757-2760. https://doi.org/10.1116/1.1420198
  4. Wu, G. and Yu, D., 2013, "Preparation and Characterization of a New Low Infrared-emissivity Coating Based on Modified Aluminum," Progress in Organic Coatings, Vol. 76, No. 1, pp. 107-112. https://doi.org/10.1016/j.porgcoat.2012.08.018
  5. Kim, D., Han, K., Choi, J., Kim, T. and Ahn, J., 2014, "Effect on IR Camouflage Patterns for Object Surface Against Background Conditions," J. of the Korean Society for Aeronautical and Space Sciences, Conference Fall 2014, pp. 1099-1102.
  6. Disalvo, F. J., 1999, "Thermoelectric Cooling and Power Generation," Science, Vol. 285, No. 5428, pp. 703-706. https://doi.org/10.1126/science.285.5428.703
  7. Bell, L. E., 2008, "Cooling, Heating, Generating Power, and Recovering Waste Heat Thermoelectric Systems," Science, Vol. 321, No. 5895, pp. 1457-1461. https://doi.org/10.1126/science.1158899
  8. Liu, D., Zhao, F. Y., Yang, H. X. and Tang, G. F., 2015, "Thermoelectric Mini Cooler Coupled with Micro Thermosiphon for CPU Cooling System," Energy, Vol. 83, No. 1, pp. 29-36. https://doi.org/10.1016/j.energy.2015.01.098
  9. Mansour, K., Qiu, Y., Hill, C. J., Soibel, A. and Yang, R. Q., 2006, "Mid-infrared Interband Cascade Lasers at Thermoelectric Cooler Temperatures," Electronics Letters, Vol. 42, No. 18, pp. 1034-1036. https://doi.org/10.1049/el:20062442
  10. Choi, H. S., Yun, S. and Whang, K. I., 2007, "Development of a Temperature-controlled Car-seat System Utilizing Thermoelectric Device," Applied Thermal Engineering, Vol. 27, pp. 2841-2849. https://doi.org/10.1016/j.applthermaleng.2006.09.004
  11. Miranda, A. G., Chen, T. S. and Hong, C. W., 2013, "Feasibility Study of a Green Energy Powered Thermoelectric Chip Based Air Conditioner for Electric Vehicles," Energy, Vol. 59, pp. 633-641. https://doi.org/10.1016/j.energy.2013.07.013
  12. Landau, L. D. and Lifshitz, E. M., 1960, Electrodynamics of continuous media, Pergamon Press, Oxford, UK, pp. 104-110.
  13. Rowe, D. M. and Gao, M., 1998, "Evaluation of Thermoelectric Modules for Power Generation," Journal of Power Sources, Vol. 73, No. 2, pp. 193-198. https://doi.org/10.1016/S0378-7753(97)02801-2
  14. Kays, W., Crawford, M. and Weigand, B., 2005, Convective Heat and Mass Transfer, McGraw-Hill, New York, pp. 229-280.
  15. Hedin, A. E., 1991, "Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere," Journal of Geophysical Research, Vol. 96, No. A2, pp. 1159-1172. https://doi.org/10.1029/90JA02125
  16. Haddad, O. M., Al-Nimr, M.A. and Maqableh, A., 2000, "Enhanced Solar Still Performance using a Radiative Cooling System," Renewable Energy, Vol. 21, pp. 459-469. https://doi.org/10.1016/S0960-1481(00)00079-3
  17. Tang, R., Etzion, Y. and Meir, I. A., 2004, "Estimates of Clear Night Sky Emissivity in the Negev Highlands, Israel," Energy Conversion and Management, Vol. 45, No. 11-12, pp. 1831-1843. https://doi.org/10.1016/j.enconman.2003.09.033