DOI QR코드

DOI QR Code

Effect of Annealing Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by Radio Frequency Magnetron Sputtering

  • Kim, Byoungkeun (Department of Semiconductor Engineering, Cheongju University) ;
  • Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2016.11.22
  • Accepted : 2016.12.12
  • Published : 2017.02.25

Abstract

Amorphous oxide thin film transistors (TFTs) were fabricated with 0.5 wt% silicon doped zinc tin oxide (a-0.5SZTO) thin film deposited by radio frequency (RF) magnetron sputtering. In order to investigate the effect of annealing treatment on the electrical properties of TFTs, a-0.5SZTO thin films were annealed at three different temperatures ($300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$ for 2 hours in a air atmosphere. The structural and electrical properties of a-0.5SZTO TFTs were measured using X-ray diffraction and a semiconductor analyzer. As annealing temperature increased from $300^{\circ}C$ to $500^{\circ}C$, no peak was observed. This provided crystalline properties indicating that the amorphous phase was observed up to $500^{\circ}C$. The electrical properties of a-0.5SZTO TFTs, such as the field effect mobility (${\mu}_{FE}$) of $24.31cm^2/Vs$, on current ($I_{ON}$) of $2.38{\times}10^{-4}A$, and subthreshold swing (S.S) of 0.59 V/decade improved with the thermal annealing treatment. This improvement was mainly due to the increased carrier concentration and decreased structural defects by rearranged atoms. However, when a-0.5SZTO TFTs were annealed at $700^{\circ}C$, a crystalline peak was observed. As a result, electrical properties degraded. ${\mu}_{FE}$ was $0.06cm^2/Vs$, $I_{ON}$ was $5.27{\times}10^{-7}A$, and S.S was 2.09 V/decade. This degradation of electrical properties was mainly due to increased interfacial and bulk trap densities of forming grain boundaries caused by the annealing treatment.

Keywords

References

  1. T. Kamiya, K. Nomura, and H. Hosono, Journal of display Technology, 5, 468 (2009). [DOI: https://doi.org/10.1109/JDT.2009.2034559]
  2. T. Kamiya, K. Nomura, and H. Hosono, Journal of display Technology, 5, 462 (2009). [DOI: https://doi.org/10.1109/JDT.2009.2022064]
  3. E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, Journal of Electrical Engineering & Technology, 6, 539 (2011). [DOI: https://doi.org/10.5370/JEET.2011.6.4.539]
  4. H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F. Wager, Journal of Non-Crystalline Solids, 354, 2826 (2008). [DOI: https://doi.org/10.1016/j.jnoncrysol.2007.10.105]
  5. A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J. F. Muth, Thin Solid Films, 516, 1326 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.03.153]
  6. K. M. Ko and S. Y. Lee, Trans. Electr. Electron. Mater., 15, 328 (2014). [DOI: https://doi.org/10.4313/TEEM.2014.15.6.328]
  7. J. Y. Kwon, J. S. Jung, K. S. Son, K. H Lee, J. S. Park, T. S. Kim, J. S. Park, R. Choi, J. K. Jeong, B. W. Koo, and S. Y. Lee, J. Electrochem. Soc., 158, H433 (2011). [DOI: https://doi.org/10.1149/1.3552700]
  8. J. S. Park, T. S. Kim, K. S. Son, K. H. Lee, W. J. Maeng, H. S. Kim, E. S. Kim, K. B. Park, J. B. Seon, W. Choi, M. K. Ryu, and S. Y. Lee, Appl. Phys. Lett., 96, 262109 (2010). [DOI: https://doi.org/10.1063/1.3435482]
  9. J. Y. Choi, S. S. Kim, and S. Y. Lee, Electron. Mater. Lett., 9, 489 (2013). [DOI: https://doi.org/10.1007/s13391-013-0045-x]
  10. I. J. Kang, C. H. Park, E. Chong, and S. Y. Lee, Current Appl. Phys., 12, S12 (2012). [DOI: https://doi.org/10.1016/j.cap.2012.05.044]
  11. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 90, 242114 (2007). [DOI: https://doi.org/10.1063/1.2749177]
  12. P. Barquinha, A. Vilà, G. Goncalves, L. Pereira, R. Martins, J. Morante, and E. Fortunato, IEEE Trans. Electron Dev., 55, 954 (2008). [DOI: https://doi.org/10.1109/TED.2008.916717]
  13. S. M. Han and S. Y. Lee, Trans. Electr. Electron. Mater., 16, 62 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.2.62]
  14. K. M. Ko and S. Y. Lee, Trans. Electr. Electron. Mater., 16, 99 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.2.99]
  15. P. B. Shea and J. Kanicki, J. Appl. Phys., 98, 014503 (2005). [DOI: https://doi.org/10.1063/1.1949713]
  16. J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 91, 113505 (2007). [DOI: https://doi.org/10.1063/1.2783961]
  17. C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, IEEE Electron Device Lett., 35, 1103 (2014). [DOI: https://doi.org/10.1109/LED.2014.2354598]
  18. C. S. Fuh, S. M. Sze, P. T. Liu, L. F. Teng, and Y. T. Chou, Thin Solid Films, 520, 1489 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.08.088]
  19. J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, J. H. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, Thin Solid Films, 494, 42 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.07.195]