DOI QR코드

DOI QR Code

Comparative Study of Conventional and Microwave Sintering of Large Strain Bi-Based Perovskite Ceramics

  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan, Korea and Materials Analysis Laboratory, DEA-IL Corporation) ;
  • Dinh, Thi Hinh (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Chang-Heon (School of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Tran, Vu Diem Ngoc (School of Materials Science and Engineering, Hanoi University of Science and Technology)
  • Received : 2016.07.25
  • Accepted : 2017.01.16
  • Published : 2017.02.25

Abstract

A comparative study of microwave and conventional sintering of lead-free $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-BaZrO_3-CuO$ ceramics is presented. It was found that microwave sintering (MWS) can be successfully applied to the fabrication of large strain Bi-perovskite with electric field-induced strains comparable to those obtained with conventional sintering (CFS). Although MWS resulted in smaller grained microstructures than CFS, the ferroelectric properties were stronger in MWS-derived specimens than in the CFS-derived ones. The piezoelectric strain constant $d_{33}{^*}$ of the CFS-derived specimens reached a maximum value of 372 pm/V after sintering at $1100^{\circ}C$, whereas that of MWS-derived specimens peaked at $950^{\circ}C$ with a $d_{33}{^*}$ value of 324 pm/V.

Keywords

References

  1. D. K. Agrawal, Curr. Opin. Solid State Mater. Sci., 3, 480 (1998). [DOI: http://dx.doi.org/10.1016/S1359-0286(98)80011-9]
  2. S. Das, A. K. Mukhopadhyay, S. Datta, and D. Basu, Bull. Mater. Sci., 32, 1 (2009). [DOI: http://dx.doi.org/10.1007/s12034-009-0001-4]
  3. C. Y. Fang, C. A. Randal, M. T. Lanagan, and D. K. Agrawal, J. Electroceram., 22, 125 (2008). [DOI: http://dx.doi.org/10.1007/s10832-008-9441-2]
  4. C. Leach, N. K. Ali, D. Cupertino, and R. Freer, Mater. Sci. Eng. B, 170, 15 (2010). [DOI: http://dx.doi.org/10.1016/j.mseb.2010.02.018]
  5. Z. Bai, C. Xie, S. Zhang, W. Xu, and J. Xu, Mater. Sci. Eng. B, 176, 181 (2011). [DOI: http://dx.doi.org/10.1016/j.mseb.2010.11.005]
  6. Y. Yan, L. Liu, C. Ning, Y. Yang, C. Xia, Y. Zou, S. Liu, X. Wang, K. Liu, X. Liu, and G. Liu, Mater. Lett., 165, 135 (2016). [DOI: http://dx.doi.org/10.1016/j.matlet.2015.11.015]
  7. J. Croquesel, D. Bouvard, J. M. Chaix, C. P. Carry, S. Saunier, and S. Marinel, Acta Mater., 116, 53 (2016). [DOI: http://dx.doi.org/10.1016/j.actamat.2016.06.027]
  8. C. S. Chen, C. C. Chou, W. C. Yang, and I. N. Lin, J. Electroceram., 13, 573 (2004). [DOI: http://dx.doi.org/10.1007/s10832-004-5160-5]
  9. Y. Fang, M. T. Lanagan, D. K. Agrawal, G. Y. Yang, C. A. Randall, T. R. Shrout, A. Henderson, M. Randall, and A. Tajuddin, J. Electroceram., 15, 13 (2005). [DOI: http://dx.doi.org/10.1007/s10832-005-0374-8]
  10. C. Y. Tsay, K. S. Liu, T. F. Lin, and I. N. Lin, J. Magn, Magn. Mater., 209, 189 (2000). [DOI: http://dx.doi.org/10.1016/S0304-8853(99)00684-8]
  11. A. Bhaskar, B. R. Kanth, and S. R. Murthy, J. Magn. Magn. Mater., 283, 109 (2004). [DOI: http://dx.doi.org/10.1016/j.jmmm.2004.05.039]
  12. B. Vaidhyanathan, K. Annapoorani, J. Binner, and R. Raghavendra, J. Am. Ceram. Soc., 93, 2274 (2010). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2010.03740.x]
  13. J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc., 92, 1153 (2009). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2009.03061.x]
  14. J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). [DOI: http://dx.doi.org/doi:10.1016/j.jeurceramsoc.2014.12.013]
  15. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, J. Materiomics, 2, 1 (2016). [DOI: http://dx.doi.org/10.1016/j.jmat.2015.12.002]
  16. C. W. Ahn, C. H. Hong, B. Y. Choi, H. P. Kim, H. S. Han, Y. Hwang, W. Jo, K. Wang, J. F. Li, J. S. Lee, and I. W. Kim, J. Korean Phys. Soc., 68, 1481 (2016). [DOI: http://dx.doi.org/10.3938/jkps.68.1481]
  17. Z. Sun, Y. Pu, Z. Dong, Y. Hu, P. Wang, X. Liu, and Z. Wang, Mater. Sci. Eng. B, 185, 114 (2014). [DOI: http://dx.doi.org/10.1016/j.mseb.2014.02.016]
  18. J. K. Kang, H. S. Han, S. K. Jeong, K. K. Ahn, S. J. Jeong, and J. S. Lee, J. Ceram. Process. Res., 14, 230 (2013).
  19. M. R. Bafandeh, R. Gharahkhani, and J. S. Lee, Mater. Chem. Phys., 143, 1289 (2014). [DOI: http://dx.doi.org/10.1016/j.matchemphys.2013.11.036]
  20. M. R. Bafandeh, R. Gharahkhani, M. H. Abbasi, A. Saidi, J. S. Lee, and H. S. Han, J. Electroceram., 33, 128 (2014). [DOI: http://dx.doi.org/10.1007/s10832-014-9951-z]
  21. S. Swain, P. Kumar, D. K. Agrawal, and Sonia, Ceram. Int., 39, 3205 (2013). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.10.005]
  22. J. Li, Y. Pu, Z. Wang, and J. Dai, Ceram. Int., 39, 5069 (2013). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.12.001]
  23. T. H. Dinh, H. S. Han, J. S. Lee, C. W. Ahn, I. W. Kim, and M. R. Bafandeh, J. Korean Phys. Soc., 66, 1077 (2015). [DOI: http://dx.doi.org/10.3938/jkps.66.1077]
  24. T. H. Dinh, M. R. Bafandeh, J. K. Kang, C. H. Hong, W. Jo, and J. S. Lee, Ceram. Int., 41, 458 (2015). [DOI: http://dx.doi.org/10.1016/j.ceramint.2015.03.150]
  25. T. H. Dinh, C. H. Yoon, J. K. Kang, Y. H. Hong, and J. S. Lee, Ferroelectrics, 487, 142 (2015). [DOI: http://dx.doi.org/10.1080/00150193.2015.1071619]
  26. H. S. Han, I. K. Hong, Y. M. Kong, J. S. Lee, and W. Jo, J. Korean Ceram. Soc., 53, 145 (2016). [DOI: http://dx.doi.org/10.4191/kcers.2016.53.2.145]
  27. V. D. N. Tran, A. Ullah, T. H. Dinh, and J. S. Lee, J. Electron. Mater., 45, 2627 (2016). [DOI: http://dx.doi.org/10.1007/s11664-016-4445-1]
  28. V. D. N. Tran, A. Ullah, T. H. Dinh, and J. S. Lee, J. Electron. Mater., 45, 2639 (2016). [DOI: http://dx.doi.org/10.1007/s11664-016-4448-y]
  29. T. H. Dinh, J. K. Kang, H. T. K. Nguyen, T. A. Duong, J. S. Lee, V. D. N. Tran, and K. N. Pham, J. Korean Phys. Soc., 68, 1439 (2016). [DOI: http://dx.doi.org/10.3938/jkps.68.1439]
  30. T. H. Dinh, J. K. Kang, J. S. Lee, N. H. Khansur, J. Daniels, H. Y. Lee, F. Z. Yao, K. Wang, J. F. Li, H. S. Han, and W. Jo, J. Eur. Ceram. Soc., 36, 3401 (2016). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.05.044]
  31. V. D. N. Tran, A. Ullah, T. H. Dinh, and J. S. Lee, J. Nanosci. Nanotechnol., 16, 8025 (2016). [DOI: https://doi.org/10.1166/jnn.2016.12752]
  32. V. D. N. Tran, A. Hussain, H. S. Han, T. H. Dinh, J. S. Lee, C. W. Ahn, and I. W. Kim, Jpn. J. Appl. Phys., 51, 09MD02 (2012). [DOI: http://dx.doi.org/10.1143/jjap.51.09md02]
  33. T. V. D. Tran, H. S. Han, K. J. Kim, R. A. Malik, A. Hussain, and J. S. Lee, J. Ceram. Process. Res., 13, s177 (2012).
  34. J. K. Kang, D. J. Heo, V. Q. Nguyen, H. S. Han, J. S. Lee, and K. K. Ahn, J. Korean Phys. Soc., 61, 899 (2012). [DOI: http://dx.doi.org/10.3938/jkps.61.899]
  35. V. D. N. Tran, T. H. Dinh, H. S. Han, W. Jo, and J. S. Lee, Ceram. Int., 39, 119 (2013). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.10.046]
  36. W. Jo, J. B. Ollagnier, J. L. Park, E. M. Anton, O. J. Kwon, C. Park, H. H. Seo, J. S. Lee, E. Erdem, R. A. Eichel, and J. Rodel, J. Eur. Ceram. Soc., 31, 2107 (2011). [DOI: http://dx.doi.org/10.1016/ j.jeurceramsoc.2011.05.008]
  37. L. N. Warr and A. H. N. Rice, J. Metamorph. Geol., 12, 141 (1994). [DOI: http://dx.doi.org/10.1111/j.1525-1314.1994.tb00010.x]
  38. S. Jiang, Z. Zhu, L. Zhang, X. Xiong, J. Yi, Y. Zeng, W. Liu, Q. Wang, K. Han, and G. Zhang, Mater. Sci. Eng. B, 179, 36 (2014). [DOI: http://dx.doi.org/10.1016/j.mseb.2013.09.012]
  39. S. H. Park, C. W. Ahn, S. Nahm, and J. S. Song, Jpn. J. Appl. Phys., 43, 1072 (2004). [DOI: http://dx.doi.org/10.1143/JJAP.43.L1072]
  40. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B, 70, 024107 (2004). [DOI: http://dx.doi.org/10.1103/PhysRevB.70.024107]

Cited by

  1. A Comparative Study of Conventional and Microwave Sintering of BaCe1 − xGdxO3 − δ Ceramic vol.28, pp.1, 2018, https://doi.org/10.1007/s10904-017-0708-4
  2. Study on the densification behavior of aluminum powders using microwave hot pressing process vol.97, pp.5-8, 2018, https://doi.org/10.1007/s00170-018-1867-3
  3. Low temperature sintering of lead–free (Bi1/2Na1/2)TiO3-SrTiO3-BiFeO3 piezoelectric ceramics by adding excess CuO pp.1573-8663, 2018, https://doi.org/10.1007/s10832-018-0151-0
  4. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics pp.2093-6788, 2019, https://doi.org/10.1007/s13391-019-00124-z