DOI QR코드

DOI QR Code

Ultrasonic Distance Measurement Method Based on Received Signal Model

수신 신호 모델을 이용한 초음파 거리 측정 방법

  • 최진희 (광운대학교 제어계측공학과) ;
  • 조황 (광운대학교 로봇학부) ;
  • 최익 (광운대학교 로봇학부)
  • Received : 2016.11.24
  • Accepted : 2017.02.24
  • Published : 2017.02.28

Abstract

Most of present ultrasonic distance measurement technologies are based on the measurement of the TOF (: Time of Flight), the elapsed time during which the ultrasonic wave travels from its transmitter to receiver, to evaluate the distance the wave travels during that time. In this case, high distance measurement accuracy requires an accurate measurement of TOF. In order to acquire an accurate TOF, this paper proposes a method that produces the TOF by using a mathematical model of the received signal obtained from a mathematical model of ultrasonic transducer. The proposed method estimates the arrival time of the received signal retrospectively by comparing its wave form obtained after triggering point with its mathematical model in the sense of least-square. Experimental result shows that the effect of variation of triggering point can be decreased by implementing the proposed method.

현재 대부분의 초음파를 이용한 거리 측정 기술은 송신부로부터 수신기까지 초음파가 진행하는 시간 즉, TOF(: Time of Flight)를 측정하여 그 동안 음파가 진행한 거리를 산출하는 방법을 활용한다. 이 경우 거리 측정 정확도를 높이기 위해서는 정확한 TOF의 측정이 필요하다. 본 논문은 정확한 TOF를 산출하기 위해 초음파 송수신기의 수학적 모델을 이용하여 수신된 파형의 수학적 모델을 얻어내고 이를 바탕으로 TOF를 산출하는 방식을 제안한다. 이 방식은 트리거링 후부터 수신된 파형를 이미 얻어진 수학적 모델과 최소자승법을 이용하여 비교하여 초음파 신호가 수신기에 도달한 시점을 역으로 추정하는 방식이다. 제안된 방법을 사용할 경우 트리거링 시점의 변동에 의한 영향을 줄일 수 있음을 실험을 통하여 확인하였다.

Keywords

References

  1. K. Soon, "Improved Localization Algorithm for Ultrasonic Satellite System," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 5, 2011, pp. 775-781.
  2. J. Choe, I. Choy, and C. Whang, "Ultrasonic Sensor, Position Tracking System, Nonlinear Least Square Algorithm, Weighted Nonlinear Least Square Algorithm," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 5, 2013, pp. 725-731. https://doi.org/10.13067/JKIECS.2013.8.5.725
  3. D. Seo, S. Noh, and N. Ko, "Moving Object Following Control for Differential Drive Robot Based on Two Distance Sensors," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 5, 2011, pp. 765-773.
  4. R. Kuc and M. Wiegen, "Physically based simulation model for acoustic sensor robot navigation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9, no. 6, 1987, pp. 766-778.
  5. H. Peremans, K. Audenaert, and J. Campenhout, "A high resolution sensor based on tri-aural perception," IEEE Trans. Robotics and Automation, vol. 9, no. 1, 1993, pp. 36-48. https://doi.org/10.1109/70.210793
  6. J. Llata, E. Sarabia, and J. Pria, "Three dimensional robot vision using ultrasonic sensors," J. Intelligent Robot System, vol. 33, no. 3, 2002, pp. 267-284. https://doi.org/10.1023/A:1015084304191
  7. M. Martinez and G. Benet, "Wall corner classification using sonar: A new approach based on geometric features," Sensors, vol. 10, no. 12, 2010, pp. 10683-10700. https://doi.org/10.3390/s101210683
  8. J. Jackson, R. Summan, G. Dobie, S. Whiteley, G. Pierce, and G. Hayward, "Time-of-flight measurement techniques for airborne ultrasonic ranging," IEEE trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 2, 2013, pp. 343-355. https://doi.org/10.1109/TUFFC.2013.2570
  9. R. Queiros, P. Sira, and A. Serra, "A new method for High resolution ultrasonic ranging in air," IEEE Trans. Instru. and Meas., vol. 59, no. 12, 2010, pp. 3227-3236. https://doi.org/10.1109/TIM.2010.2047305
  10. R. Queiros, P. Gira, and A. Serra, "Cross-corellation and sine-fitting techniques for high resolution ultrasonic ranging," IEEE Trans. Instru. and Meas., vol. 59, no. 12, 2010, pp. 3227-3236. https://doi.org/10.1109/TIM.2010.2047305
  11. J. Villadangos, J. Urena, J. Carcia, M. Mazo, A. Hernandez, A. Jimenez, D. Ruiz, and C. Marziani, "Measuring time of flight in an ultrasonic LPS system using generalized corss-correlation," Sensors, vol. 11, no. 11, 2011, pp. 10326-10342. https://doi.org/10.3390/s111110326
  12. W. McMullan, B. Delaughe, and J. Bird, "A simple rising edge detector for time of arrival estimation," IEEE Trans. Instru. and Meas., vol. 45, no. 4, 1996, pp. 823-827. https://doi.org/10.1109/19.517003
  13. B. Barshan, "Fast processing techniques for accurate ultrasonic range measurements," Meas. Sci. Technol, vol. 11, no. 1, 2000, pp. 45-50. https://doi.org/10.1088/0957-0233/11/1/307
  14. E. Sarabia, J. Llata, S. Robla, C. Ferrero, and J. Oria, "Accurate estimation of airborne ultrasonic time-of-flight for overlapping echoes," Sensors, vol. 13, no. 11, 2013, pp. 15465-15488. https://doi.org/10.3390/s131115465
  15. M. Biggs, Nonlinear optimization with engineering applications. : Springer Verlag, 2008.