DOI QR코드

DOI QR Code

양상추에 인위접종된 Escherichia coli O157:H7, Salmonella Typhimurium과 Listeria monocytogenes에 대한 저온 플라즈마와 UV-C의 살균 효과

Combined Effect of Cold Plasma and UV-C Against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on Fresh-cut Lettuce

  • 성지영 (국민대학교 자연과학대학 식품영양학과) ;
  • 박미정 (국민대학교 자연과학대학 식품영양학과) ;
  • 권기현 (한국식품연구원) ;
  • 오세욱 (국민대학교 자연과학대학 식품영양학과)
  • 투고 : 2016.11.01
  • 심사 : 2016.11.08
  • 발행 : 2017.02.28

초록

본 연구에서는 양상추에 접종된 E. coli O157:H7, S. Typhimurium과 L. monocytogene에 대하여 저온 플라즈마와 UV-C 단독처리 및 병행처리 효과를 측정하였다. E. coli O157:H7, S. Typhimurium, L. monocytogenes는 양상추에 초기 농도가 5.82, 5.09, 5.65 log CFU/g이 되도록 각각 접종하였다. 저온 플라즈마와 UV-C를 처리된 양상추는 $4^{\circ}C$에서 9일간 보관하며 미생물학적 분석과 관능평가를 실시하였다. 저온 플라즈마 처리는 E. coli O157:H7, S. Typhimurium, L. monocytogenes의 개체 수를 각각 0.26, 0.65, 0.93 log CFU/g 수준으로 감소시켰다. 또한, UV-C 처리 시 각각 0.87, 0.88, 1.14 log CFU/g 수준으로 감소되었다. 또한 UV-C 처리 후 저온 플라즈마를 처리한 병행처리에서는 각각 1.44, 2.70, 1.62 log CFU/g 수준으로 감소하였다. 저온 플라즈마와 UV-C 단독처리 보다는 병행처리가 좀 더 효과적으로 균을 저감하는 것으로 판단되었다. 관능평가 결과는 외관, 질감, 전체적인 수용도 면에서 대조구와 비교하였을 때, 보관 6일까지 유의적인 차이가 없었다. 따라서 저온 플라즈마와 UV-C 병행처리는 양상추에 존재하는 균을 저감하기 위한 효과적인 기술로 활용될 수 있을 것으로 생각되었다.

This study was conducted to investigate the effect of cold plasma combined with UV-C irradiation against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on lettuce. E. coli O157:H7, S. Typhimurium, and L. monocytogenes, corresponding to approximately 5.82, 5.09, 5.65 log CFU/g, were inoculated on lettuce, respectively. Then, the lettuce was treated with cold plasma, UV-C and combination (cold plasma + UV-C), respectively. The treated lettuce was stored for 9 days at $4^{\circ}C$ for microbiological analysis and sensory evaluation. Cold plasma reduced the populations of E. coli O157:H7, S. Typhimurium, and L. monocytogenes by 0.26, 0.65, and 0.93 log CFU/g, respectively. Each microorganism were reduced by 0.87, 0.88, and 1.14 log CFU/g after UV-C treatment. And, the combined treatment that was treated by cold plasma after UV-C treatment reduced the populations of inoculated microorganisms by 1.44, 2.70, 1.62 log CFU/g, respectively. The all treatment significantly (p < 0.05) reduced the populations of all inoculated bacteria compared to untreated lettuce. UV-C combined with cold plasma was the most effective for reducing the pathogenic bacteria on lettuce, by showing log-reductions of ${\geq}2.0\;log\;CFU/g$. All treatment was not significantly different until 6 day storage compared to control group in terms of appearance, texture and overall acceptability. Therefore, the combined treatment will be an effective intervention method to control the bacteria on lettuce.

키워드

참고문헌

  1. Dolan C, Humphrey J: Governance and trade in fresh vegetables: the impact of UK supermarkets on the African horticulture industry. J. Dev. Stud. 37, 147-176 (2000). https://doi.org/10.1080/713600072
  2. Reardon T, Timmer CP, Barrett CB, Berdegue J: The rise of supermarkets in Africa, Asia, and Latin America. Am. J. Agr. Econ. 85, 1140-1146 (2003). https://doi.org/10.1111/j.0092-5853.2003.00520.x
  3. Harris L, Farber J, Beuchat L, Parish M, Suslow T, et al.: Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food. Sci. F. 2, 78-141 (2003). https://doi.org/10.1111/j.1541-4337.2003.tb00031.x
  4. CDC (Centers for Disease Control and Prevention): Available from: http://wwwn.cdc.gov/foodborneoutbreaks/Default.aspx. Accessed on Nov. 08, 2013 (2013).
  5. Sagong H-G, Lee S-Y, Chang P-S, Heu S, Ryu S, et al.: Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 145, 287-292 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.01.010
  6. Zhang S, Farber J: The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiol. 13, 311-321 (1996). https://doi.org/10.1006/fmic.1996.0037
  7. Beuchat L, Nail B, Adler B, Clavero M: Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Protect. 61, 1305-1311 (1998). https://doi.org/10.4315/0362-028X-61.10.1305
  8. Gelinas P, Goulet J: Neutralization of the activity of eight disinfectants by organic matter. J. Appl. Bacteriol. 54, 243-247 (1983). https://doi.org/10.1111/j.1365-2672.1983.tb02613.x
  9. Kim J, Marshall MR, Du W-X, Otwell WS, Wei C-I: Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide. J. Agr. Food Chem. 47, 3586-3591 (1999). https://doi.org/10.1021/jf981397h
  10. Feng H, Sun P, Chai Y, Tong G, Zhang J, et al.: The interaction of a direct-current cold atmospheric-pressure air plasma with bacteria. IEEE T. Plasma Sci. 37, 121-127 (2009). https://doi.org/10.1109/TPS.2008.2008438
  11. Bai N, Sun P, Zhou H, Wu H, Wang R, et al.: Inactivation of Staphylococcus aureus in water by a cold, He/$O_2$ atmospheric pressure plasma microjet. Plasma Processes Polym. 8, 424-431 (2011). https://doi.org/10.1002/ppap.201000078
  12. Koban I, Matthes R, Hubner N-O, Welk A, Meisel P, et al.: Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J. Phys. 12, 073039 (2010). https://doi.org/10.1088/1367-2630/12/7/073039
  13. Escalona VH, Aguayo E, Martinez-Hernandez GB, Artes F: UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol. Tec. 56, 223-231 (2010). https://doi.org/10.1016/j.postharvbio.2010.01.008
  14. Sizer C, Balasubramaniam V: New intervention processes for minimally processed juices. Food Technol. 53, 64-67 (1999).
  15. Park M-H, Kim J-G: Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biol. Tec. 100, 109-112 (2015). https://doi.org/10.1016/j.postharvbio.2014.09.013
  16. Martinez-Hernandez GB, Huertas J-P, Navarro-Rico J, Gomez PA, Artes F, et al.: Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli. Food microbiol. 46, 263-271 (2015). https://doi.org/10.1016/j.fm.2014.08.008
  17. Allende A, McEvoy JL, Luo Y, Artes F, Wang CY: Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce. Food Microbiol. 23, 241-249 (2006). https://doi.org/10.1016/j.fm.2005.04.009
  18. Lee K-H, Kim H-J, Woo KS, Jo C, Kim J-K, et al.: Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT-Food Sci. Technol. 73, 442-447 (2016). https://doi.org/10.1016/j.lwt.2016.06.055
  19. Cheon H-L, Shin J-Y, Park K-H, Chung M-S, Kang D-H: Inactivation of foodborne pathogens in powdered red pepper (Capsicum annuum L.) using combined UV-C irradiation and mild heat treatment. Food Control 50, 441-445 (2015). https://doi.org/10.1016/j.foodcont.2014.08.025
  20. Lim W, Harrison MA: Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control 66, 166-173 (2016). https://doi.org/10.1016/j.foodcont.2016.01.043
  21. Lavelli, Vera: Antioxidant activity of minimally processed red chicory (Cichorium intybus L.) evaluated in xanthine oxidase-, myeloperoxidase-, and diaphorase-catalyzed reactions. J. Agr. Food Chem. 56.16: 7194-7200 (2008). https://doi.org/10.1021/jf801913v
  22. Pasquali, Frederique, et al.: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 60, 552-559 (2016). https://doi.org/10.1016/j.foodcont.2015.08.043