DOI QR코드

DOI QR Code

유전체 다중층을 이용한 국소 표면 플라즈몬 공명 센서의 감도 향상에 관한 연구

Estimation of Sensitivity Enhancements on Localized Surface Plasmon Resonance Sensor Using Dielectric Multilayer

  • 안희상 (부산대학교 인지메카트로닉스공학과) ;
  • 강태영 (부산대학교 인지메카트로닉스공학과) ;
  • 오진우 (부산대학교 나노에너지공학과) ;
  • 김규정 (부산대학교 인지메카트로닉스공학과)
  • Ahn, Heesang (Department of Cogno-mechatronics Engineering, Pusan National University) ;
  • Kang, Tae Young (Department of Cogno-mechatronics Engineering, Pusan National University) ;
  • Oh, Jin-Woo (Department of Nanoenergy Engineering, Pusan National University) ;
  • Kim, Kyujung (Department of Cogno-mechatronics Engineering, Pusan National University)
  • 투고 : 2016.12.30
  • 심사 : 2017.02.23
  • 발행 : 2017.02.25

초록

본 논문에서는 LSPR 센서에 적용하기 위한 제한된 높이 100 nm에서 $TiO_2$, $SiO_2$의 다중층을 이용한 LSPR 센서를 디자인을 제안했다. LSPR 센서의 구조는 유전체 층과 나노 구조가 있는 금속층으로 디자인 하였다. 금속층은 금 박막 40 nm와 높이 40 nm, 주기 600 nm, 선폭 300 nm인 나노와이어 구조체를 올려놓은 구조로 디자인하였다. 유전체 층의 높이를 100nm로 제한하고, $TiO_2$, $SiO_2$가 반복되는 구조로 하여 반복층의 개수를 1~4개로 변경하면서 비교 분석하였다. 파장 가변형 SPR을 디자인하기 위해 각도를 75도로 고정하고 파장을 변화시켜 FEM방식으로 계산하였다. 결과로 굴절율이 고정되어 있을 때 다중층의 개수가 증가할수록 공명 파장이 짧아지는 현상을 확인 하였고, 파장의 변화에 더 민감하게 변화하는 것을 측정하였다. 다만, 다중층의 개수가 3개층 이상이 되면 변화하지 않는 것을 확인하였다.

In this research, we designed an LSPR sensor based on a thin-film multilayer comprising $TiO_2$ and $SiO_2$. The thickness of the overall substrate layer of the suggested multilayer LSPR sensor is limited to 100 nm, and the number of repeating $TiO_2$ and $SiO_2$ thin films is 1-4 within a limited thickness. Additionally, a nanowire structure with a gold thin film of 40 nm, height of 40 nm, period of 600 nm, and line width of 300 nm was formed on the multilayer. To design the variable wavelength-type SPR, the angle was fixed at $75^{\circ}$ and the wavelength was changed. We then simulated the system with the finite-element method (FEM) using Maxwell's equations. It was confirmed that the resonance wavelength became shorter as the number of multilayers increased when the refractive index was fixed. We found that the wavelength changes were more sensitive. However, no changes were observed when the number of the multilayers was three or higher.

키워드

참고문헌

  1. J. Homola,, S. S. Yee, and G. Gauglitz, "Suface plasmon resonance sensors: review," Sens. Actuators B, 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  2. K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, "Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures," Opt. Lett., 34, 3905-3907 (2009). https://doi.org/10.1364/OL.34.003905
  3. J.-r. Choi., S. Lee, and K. Kim, "Plasmon based super resolution imaging for single molecular detection: Breaking the diffraction limit," Biomed Eng. Lett., 4, 231-238( 2014). https://doi.org/10.1007/s13534-014-0154-y
  4. K. Kim, S. J. Yoon, and D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express, 14, 12419-12431 (2006). https://doi.org/10.1364/OE.14.012419
  5. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem., 377, 528-539(2003). https://doi.org/10.1007/s00216-003-2101-0
  6. R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B, 123, 10-12 (2007). https://doi.org/10.1016/j.snb.2006.08.020
  7. S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, "Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays," Nanotechnology, 21, 355503 (2010). https://doi.org/10.1088/0957-4484/21/35/355503
  8. E. D. Gaspera and A. Martucci, "Sol-gel thin film for plasmonic gas sensors," Sensors, 15, 16910-16928 (2015). https://doi.org/10.3390/s150716910
  9. S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, "Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization," Appl. Opt., 49, 484-491 (2010). https://doi.org/10.1364/AO.49.000484
  10. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, "Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings," Nanotechnology, 20, 315501 (2009) https://doi.org/10.1088/0957-4484/20/31/315501
  11. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, "Targetlocalized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing," IEEE J. Quant. Electron., 16, 1004-1014 (2010). https://doi.org/10.1109/JSTQE.2009.2034123
  12. W. Lee, K. Kim, and D. Kim, "Electromagnetic Near-Field Nanoantennas for Subdiffraction-Limited Surface Plasmon- Enhanced Light Microscopy," IEEE J. Qunatum Electron., 18, 1684-1691 (2012). https://doi.org/10.1109/JSTQE.2012.2190046
  13. Y. Yuan and Y. Dai, "A Revised LRSPR Sensor with Sharp Reflection Spectrum," Sensors, 14, 16664-16671 (2014) https://doi.org/10.3390/s140916664
  14. R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B., 123, 10-12 (2007). https://doi.org/10.1016/j.snb.2006.08.020
  15. G. G. Nenningera, P. Tobiškab, J. Homola, and S.S. Yeea, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sens. Actuators B., 74, 1-3 (2001). https://doi.org/10.1016/S0925-4005(00)00704-8
  16. J. C. Quail, J. G. Rako, and H. J. Simon, "Long-range surface-plasmon modes in silver and aluminum films," Opt. Lett., 8, 377-379 (1983). https://doi.org/10.1364/OL.8.000377
  17. A. W. Wark, H. J. Lee, and R. M. Corn, "Long-range surface plasmon resonance imaging for bioaffinity sensors," Anal. Chem., 77, 3904-3907(2005). https://doi.org/10.1021/ac050402v
  18. B. Min, E. Ostby, V. Sorger, E. U.-Avila, L. Yang, X. Zhang, and K. Vahala, "High-Q surface plasmon polariton whispering gallery microcavity," Nature, 457, 455-458 (2009). https://doi.org/10.1038/nature07627
  19. J. H. Jang, S. J. Cho, and J. H. Kim, "Lumped Parameter Modeling and Analysis of Electromagnetic Linear Actuator," J. of the KSMPE, 15, 18-24 (2016). https://doi.org/10.14775/ksmpe.2016.15.5.018