DOI QR코드

DOI QR Code

Feedback-RFC Model to Individualize Heartbeat Standards

개인별 심박수 기준을 설정하기 위한 피드백-RFC 모델

  • Received : 2016.03.28
  • Accepted : 2016.07.14
  • Published : 2017.02.28

Abstract

Many of the wearable smart fitness devices provide services related to users' heartbeat rates. These services use fixed standards which have been pre-determined based on statistical data. However, because body conditions significantly differ between individuals, the services applying fixed standards to all individuals are not reliable. This paper proposes the Feedback-RFC model which adapts heartbeat standards to individual users' exercise abilities and also proposes a method to implement the model. This paper also shows the effectiveness of the Feedback-RFC model by collecting heartbeat data from 12 participants and evaluating the model with the data.

많은 웨어러블 스마트 피트니스 장치들이 심박수와 관련된 서비스를 제공한다. 이러한 서비스는 통계를 기반으로 사전 결정한 고정 수치를 기준으로 이용한다. 그러나 사람들의 신체조건은 개개인마다 다르기 때문에, 모든 개개인을 같은 기준으로 적용하는 서비스는 신뢰성이 낮다. 본 논문에서는 사용자의 운동 능력에 맞추어 심박수의 기준이 변동하는 피드백-RFC 모델과, 모델을 구현하는 방법을 제안한다. 그리고 12명의 실험참가자들로부터 심장박동 데이터를 수집하여 모델을 평가함으로써 제안 모델의 효용성을 보인다.

Keywords

References

  1. S. M. Fox 3rd and W. L. Haskell, "Physical activity and the prevention of coronary heart disease," Bulletin of the New York Academy of Medicine, Vol.44, No.8, p.950, 1968.
  2. H. Tanaka, K. D. Monahan, and D. R. Seals, "Age-predicted maximal heart rate revisited," Journal of the American College of Cardiology, Vol.37, No.1, pp.153-156, 2001. https://doi.org/10.1016/S0735-1097(00)01054-8
  3. J. Karvonen and T. Vuorimaa, "Heart rate and exercise intensity during sports activities," Sports Medicine, Vol.5, No.5, pp.303-311, 1988. https://doi.org/10.2165/00007256-198805050-00002
  4. J. A. Zoladz, Z. Szkutnik, J. Majerczak, and K. Duda, "Detection of the change point in oxygen uptake during an incremental exercise test using recursive residuals: relationship to the plasma lactate accumulation and blood acid base balance," European Journal of Applied Physiology and Occupational Physiology, Vol.78, No.4, pp.369-377, 1998. https://doi.org/10.1007/s004210050433
  5. H.-T. Chang, "A Fitness Assessment Recommendation System Using Cloud Services," International Journal of Advancements in Computing Technology, Vol.5, 2013.
  6. R. A. Palomares, J. R. Ramos, A. M. Cortes, J. A. N. Martinez, and J. L. V. Gonzalez, "The Intelligent Personal Trainer," in Electronics, Communications and Computers, 2006. CONIELECOMP 2006. 16th International Conference on, 2006.
  7. H.-H. Hsu, N. Y. Yen, T.-W. Pai, and M.-H. Chang, "Personal Health Management on a Smartphone Platform," Biomedical Engineering: Applications, Basis and Communications, Vol.26, No.4, p.1440004, 2014. https://doi.org/10.4015/S1016237214400043
  8. J.-E. Lim, O. Choi, C.-S. Na, and D.-K. Baik, "A context-aware fitness guide system for exercise optimization in U-health," Information Technology in Biomedicine, IEEE Transactions on, Vol.13, No.3, pp.370-379, 2009. https://doi.org/10.1109/TITB.2009.2013941
  9. T. C. T. Ho and X. Chen, "ExerTrek: a portable handheld exercise monitoring, tracking and recommendation system," in e-Health Networking, Applications and Services, 2009. Healthcom 2009. 11th International Conference on, pp.84-88, 2009.
  10. G. Spina, G. Huang, A. Vaes, M. Spruit, and O. Amft, "COPDTrainer: a smartphone-based motion rehabilitation training system with real-time acoustic feedback," in Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp.597-606, 2013.
  11. I. Pernek, K. A. Hummel, and P. Kokol, "Exercise repetition detection for resistance training based on smartphones," Personal and Ubiquitous Computing, Vol.17, Issue 4, pp.771-782, 2013. https://doi.org/10.1007/s00779-012-0626-y
  12. L. Breiman, "Random forests," Machine Learning, Vol.45, Issue 1, pp.5-32, 2001. https://doi.org/10.1023/A:1010933404324
  13. K. K. Kandaswamy, K.-C. Chou, T. Martinetz, S. Moller, P. Suganthan, S. Sridharan, et al., "AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties," Journal of Theoretical Biology, Vol.270, No.1, pp.56-62, 2011. https://doi.org/10.1016/j.jtbi.2010.10.037
  14. M. Khalilia, S. Chakraborty, and M. Popescu, "Predicting disease risks from highly imbalanced data using random forest," BMC Medical Informatics and Decision Making, Vol.11, No.1, p.51, 2011. https://doi.org/10.1186/1472-6947-11-51
  15. P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, "Random forests for land cover classification," Pattern Recognition Letters, Vol.27, No.4, pp.294-300, 2006. https://doi.org/10.1016/j.patrec.2005.08.011
  16. V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez, "An assessment of the effectiveness of a random forest classifier for land-cover classification," ISPRS Journal of Photogrammetry and Remote Sensing, Vol.67, pp.93-104, 2012. https://doi.org/10.1016/j.isprsjprs.2011.11.002
  17. M. Pal, "Random forest classifier for remote sensing classification," International Journal of Remote Sensing, Vol.26, No.1, pp.217-222, 2005. https://doi.org/10.1080/01431160412331269698
  18. R. Diaz-Uriarte and S. A. De Andres, "Gene selection and classification of microarray data using random forest," BMC bioinformatics, Vol.7, No.1, p.3, 2006. https://doi.org/10.1186/1471-2105-7-3
  19. S. Smith, "Determining sample size: How to ensure you get the correct sample size," E-Book (c) Qualtrics Online Sample, 2013.