Acknowledgement
Supported by : NSFs of China, HUST
References
- K. Aas, Modelling the dependence structure of financial assets: a survey of four copulas, Technical Report SAMBA/22/04, Norsk Regnesentral, 2004.
- I. Bairamov and A. Stepanov, Numbers of near bivariate record-concomitant observations, J. Multivariate Anal. 102 (2011), no. 5, 908-917. https://doi.org/10.1016/j.jmva.2011.01.007
- N. Balakrishnan and A. Stepanov, Limit results for concomitants of order statistics, Metrika 78 (2015), no. 4, 385-397. https://doi.org/10.1007/s00184-014-0508-6
- I. V. Basawa and D. Scott, Asymptotic Optimal Inference for Non-Ergodic Models, Lect. Notes Stat., vol. 17, Springer-Verlag, New York, 1983.
- P. K. Bhattacharya, Induced order statistics: Theory and applications, Nonparametric methods, 383-403, Handbook of Statist., 4, North-Holland, Amsterdam, 1984.
- T. K. Chandra, The Borel-Cantelli Lemma under dependence conditions, Statist. Probab. Lett. 78 (2008), no. 4, 390-395. https://doi.org/10.1016/j.spl.2007.07.023
- T. C. Christofides and M. Hadjikyriakou, Conditional demimartingales and related results, J. Math. Anal. Appl. 398 (2013), no. 1, 380-391. https://doi.org/10.1016/j.jmaa.2012.09.004
- A. Dembinska, A. Stepanov, and J. Wesoowski, How many observations fall in a neighborhood of an order statistic?, Comm. Statist. Theory Methods 36 (2007), no. 5-8, 851-867. https://doi.org/10.1080/03610920601041523
- C. Feng, P. Li, and J. Shen, On the Borel-Cantelli Lemma and its generalization, C. R. Math. Acad. Sci. Paris 347 (2009), no. 21-22, 1313-1316. https://doi.org/10.1016/j.crma.2009.09.011
- J. Liu, A note on the bilateral inequality for a sequence of random variables, Statist. Probab. Lett. 82 (2012), no. 5, 871-875. https://doi.org/10.1016/j.spl.2012.02.004
- J. Liu and B. L. S. Prakasa Rao, On conditional Borel-Cantelli lemmas for sequences of random variables, J. Math. Anal. Appl. 399 (2013), no. 1, 156-165. https://doi.org/10.1016/j.jmaa.2012.10.001
- J. C. Liu and L. D. Zhang, Conditional Borel-Cantelli Lemma and conditional strong law of large number, Acta Math. Appl. Sin. 37 (2014), no. 3, 537-546.
- D. Majerek, W. Nowak, and W. Zieba, Conditional strong law of large number, Int. J. Pure Appl. Math. 20 (2005), no. 2, 143-156.
- T. F. Mori and G. J. Szekely, On the Erdos-Renyi generalization of the Borel-Cantelli lemma, Studia Sci. Math. Hungar. 18 (1983), no. 2-4, 173-182.
- M. Ordonez Cabrera, A. Rosalsky, and A. Volodin, Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables, TEST 21 (2012), no. 2, 369-385. https://doi.org/10.1007/s11749-011-0248-0
- V. V. Petrov, A note on the Borel-Cantelli Lemma, Statist. Probab. Lett. 58 (2002), no. 3, 283-286. https://doi.org/10.1016/S0167-7152(02)00113-X
- V. V. Petrov, A generalization of the Borel-Cantelli Lemma, Statist. Probab. Lett. 67 (2004), no. 3, 233-239. https://doi.org/10.1016/j.spl.2004.01.008
- B. L. S. Prakasa Rao, Conditional independence, conditional mixing and conditional association, Ann. Inst. Statist. Math. 61 (2009), no. 2, 441-460. https://doi.org/10.1007/s10463-007-0152-2
- G. G. Roussas, On conditional independence, mixing, and association, Stoch. Anal. Appl. 26 (2008), no. 6, 1274-1309. https://doi.org/10.1080/07362990802405836
- A. Stepanov, On the Borel-Cantelli Lemma, Comment. Math. Univ. Carolin. 8 (2011), no. 4, 211-216.
- X. H. Wang and X. J. Wang, Some inequalities for conditional demimartingales and conditional N-demimartingales, Statist. Probab. Lett. 83 (2013), no. 3, 700-709. https://doi.org/10.1016/j.spl.2012.11.017
- D. Yuan and S. Li, From conditional independence to conditionally negative association: some preliminary results, Comm. Statist. Theory Methods 44 (2015), no. 18, 3942-3966. https://doi.org/10.1080/03610926.2013.813049
- D. Yuan, L. Wei, and L. Lei, Conditional central limit theorems for a sequence of conditional independent random variables, J. Korean Math. Soc. 51 (2014), no. 1, 1-15. https://doi.org/10.4134/JKMS.2014.51.1.001
- D. Yuan and Y. Yang, Conditional versions of limit theorems for conditionally associated random variables, J. Math. Anal. Appl. 376 (2011), no. 1, 282-293. https://doi.org/10.1016/j.jmaa.2010.10.046