DOI QR코드

DOI QR Code

Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals - A review

  • Lee, M.T. (Department of Animal Science, National Chung Hsing University) ;
  • Lin, W.C. (Department of Animal Science, National Chung Hsing University) ;
  • Yu, B. (Department of Animal Science, National Chung Hsing University) ;
  • Lee, T.T. (Department of Animal Science, National Chung Hsing University)
  • Received : 2016.06.11
  • Accepted : 2016.09.13
  • Published : 2017.03.01

Abstract

Oxidative stress suppresses animal health, performance, and production, subsequently impacting economic feasibility; hence, maintaining and improving oxidative status especially through natural nutrition strategy are essential for normal physiological process in animals. Phytochemicals are naturally occurring antioxidants that could be considered as one of the most promising materials used in animal diets in various forms. In this review, their antioxidant effects on animals are discussed as reflected by improved apparent performance, productivity, and the internal physiological changes. Moreover, the antioxidant actions toward animals further describe a molecular basis to elucidate their underlying mechanisms targeting signal transduction pathways, especially through the antioxidant response element/nuclear factor (erythroid-derived 2)-like 2 transcription system.

Keywords

References

  1. Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 1997;24:287-96. https://doi.org/10.1111/j.1600-051X.1997.tb00760.x
  2. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. Good genes, oxidative stress and condition-dependent sexual signals. Proc Biol Sci 1999;266:1-12. https://doi.org/10.1098/rspb.1999.0597
  3. Ajakaiye JJ, Perez-Bello A, Mollineda-Trujillo A. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. Vet Arhiv 2011;81:119-32.
  4. Sahin K, Orhan C, Smith MO, Sahin N. Molecular targets of dietary phytochemicals for the alleviation of heat stress in poultry. Worlds Poult Sci J 2013;69:113-24. https://doi.org/10.1017/S004393391300010X
  5. Lin MJ, Chang SC, Jea YS, et al. In vitro antioxidant capability and performance assessment of White Roman goose supplemented with dried Toona sinensis. J Appl Anim Res 2016;44:395-402. https://doi.org/10.1080/09712119.2015.1091342
  6. Joseph AM, Anthony TT. Food additive toxicology. NY: Marcel Dekker; 1994. p. 89-110.
  7. Ansari J, Khan SH, Haq Au, Yousaf M. Effect of the levels of Azadirachta indica dried leaf meal as phytogenic feed additive on the growth performance and haemato-biochemical parameters in broiler chicks. J Appl Anim Res 2012;40:336-45. https://doi.org/10.1080/09712119.2012.692329
  8. Lee TT, Yu B. Application of biologics to feedstuff. Afr J Biotechnol 2013;12:526-30.
  9. Lee TT, Ciou JY, Chen CL, Yu B. Effect of Echinacea purpurea L. on oxidative status and meat quality in Arbor Acres broilers. J Sci Food Agric 2013;93:166-72. https://doi.org/10.1002/jsfa.5745
  10. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71: 1397-421. https://doi.org/10.1016/j.bcp.2006.02.009
  11. Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 2000;130 Suppl:E467-71. https://doi.org/10.1093/jn/130.2.467S
  12. Calabrese V, Cornelius C, Mancuso C, et al. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 32008;3:2444-71. https://doi.org/10.1007/s11064-008-9775-9
  13. Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 2008;46:1271-8. https://doi.org/10.1016/j.fct.2007.10.006
  14. Sahin K, Orhan C, Akdemir F, et al. Tomato powder supplementation activates Nrf-2 via ERK/Akt signaling pathway and attenuates heat stress-related responses in quails. Anim Feed Sci Technol 2011; 165:230-7. https://doi.org/10.1016/j.anifeedsci.2011.03.003
  15. Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N. Resveratrol protects quail hepatocytes against heat stress: modulation of the Nrf2 transcription factor and heat shock proteins. J Anim Physiol Anim Nutr 2012;96:66-74. https://doi.org/10.1111/j.1439-0396.2010.01123.x
  16. Sahin K, Orhan C, Tuzcu Z, Tuzcu M, Sahin N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem Toxicol 2012;50:4035-41. https://doi.org/10.1016/j.fct.2012.08.029
  17. Tuzcu M, Sahin N, Karatepe M, et al. Epigallocatechin-3-gallate supplementation can improve antioxidant status in stressed quail. Br Poult Sci 2008;49:643-8. https://doi.org/10.1080/00071660802298336
  18. Abbas ZK, Saggu S, Sakeran MI, et al. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci 2015;22:322-6. https://doi.org/10.1016/j.sjbs.2014.11.015
  19. Cardozo LF, Pedruzzi LM, Stenvinkel P, et al. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie 2013;95:1525-33. https://doi.org/10.1016/j.biochi.2013.04.012
  20. Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 2004;812:85-99. https://doi.org/10.1016/S1570-0232(04)00764-0
  21. Barnes S. Role of phytochemicals in prevention and treatment of prostate cancer. Epidemiol Rev 2001;23:201-5.
  22. Bergman M, Varshavsky L, Gottlieb HE, Grossman S. The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry 2001;58:143-52. https://doi.org/10.1016/S0031-9422(01)00137-6
  23. Toniolo P, Van Kappel AL, Akhmedkhanov A, et al. Serum carotenoids and breast cancer. Am J Epidemiol 2001;153:1142-7. https://doi.org/10.1093/aje/153.12.1142
  24. Aeschbach R, Loliger J, Scott BC, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 1994;32:31-6. https://doi.org/10.1016/0278-6915(84)90033-4
  25. Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seeds-biochemistry and functionality. J Med Food 2003;6:291-9. https://doi.org/10.1089/109662003772519831
  26. Wang H, Cao G, Prior RL. Total antioxidant capacity of fruits. J Agric Food Chem 1996;44:701-5. https://doi.org/10.1021/jf950579y
  27. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72:1439-52. https://doi.org/10.1016/j.bcp.2006.07.004
  28. Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in AREmediated NQO1 expression by quercetin. Free Radical Bio Med 2007;42:1690-703. https://doi.org/10.1016/j.freeradbiomed.2007.02.017
  29. Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem 1992;56:324-5. https://doi.org/10.1271/bbb.56.324
  30. Kahkonen MP, Hopia AI, Vuorela HJ, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999;47:3954-62. https://doi.org/10.1021/jf990146l
  31. Han X, T Shen, H Lou. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;8:950-88. https://doi.org/10.3390/i8090950
  32. Lokaewmanee K, Yamauchi K, Komori T, Saito K. Effects on egg yolk colour of paprika or paprika combined with marigold flower extracts. Ital J Anim Sci 2010;9:356-9.
  33. Akdemir F, Orhan C, Sahin N, Sahin DrK, Hayirli A. Tomato powder in laying hen diets: effects on concentrations of yolk carotenoids and lipid peroxidation. Br Poult Sci 2012;53:675-80. https://doi.org/10.1080/00071668.2012.729142
  34. Calislar S, G Uygur. Effects of dry tomato pulp on egg yolk pigmentation and some egg yield characteristics of laying hens. J Anim Vet Adv 2010;9:96-8. https://doi.org/10.3923/javaa.2010.96.98
  35. Sahin N, Orhan C, Tuzcu M, Sahin K, Kucuk O. The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Poult Sci 2008;87:276-83. https://doi.org/10.3382/ps.2007-00207
  36. Sahin K, Orhan C, Tuzcu M, et al. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult Sci 2010;89:2251-8. https://doi.org/10.3382/ps.2010-00749
  37. Wang RJ, Li DF, Bourne S. Can 2000 years of herbal medicine history help us solve problems in the year 2000? Biotechnology in the Feed Industry. Proceedings of Alltech's 14th Annual Symposium. Nottingham, UK: Nottingham University Press; 1998. pp. 273-291.
  38. Jebelli AJ, Ghazvinian K, Mahdavi A, Vayeghan AJ, Staji H, Khaligh SG. The effect of dietary Zataria multiflora boiss: Essential oil supplementation on microbial growth and lipid peroxidation of broiler breast fillets during refrigerated storage. J Food Process Preserv 2013;37:881-8. https://doi.org/10.1111/j.1745-4549.2012.00714.x
  39. Lee TT, Chen CL, Shieh ZH, Lin JC, Yu B. Study on antioxidant activity of Echinacea purpurea L. extracts and its impact on cell viability. Afr J Biotechnol 2009;8:5097-105.
  40. Matthias A, Banbury L, Bone KM, Leach DN, Lehmann RP. Echinacea alkylamides modulate induced immune responses in T-cells. Fitoterapia 2008;79:53-8. https://doi.org/10.1016/j.fitote.2007.07.012
  41. Percival SS. Use of Echinacea in medicine. Biochem Pharmacol 200; 60:155-8. https://doi.org/10.1016/S0006-2952(99)00413-X
  42. Sullivan AM, Laba JG, Moore JA, Lee TD. Echinacea induced macrophage activation. Immunopharmacol Immunotoxicol 2008;30:553-74. https://doi.org/10.1080/08923970802135534
  43. Jahanian E, Jahanian R, Rahmani HR, Alikhani M. Dietary supplementation of Echinacea purpurea powder improved performance, serum lipid profile, and yolk oxidative stability in laying hens. J Appl Anim Res 2017;45:45-51. https://doi.org/10.1080/09712119.2015.1091344
  44. Thygesen L, Thulin J, Mortenson A, Skibsted LH, Molgaard P. Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chem 2007;101:74-81. https://doi.org/10.1016/j.foodchem.2005.11.048
  45. Ruberto G, Renda A, Daquino C, et al. Polyphenols constituents and antioxidant activity of grape pomace from five Sicilian red grape cultivars. Food Chem 2007;100:203-10. https://doi.org/10.1016/j.foodchem.2005.09.041
  46. Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 2004;52:255-60. https://doi.org/10.1021/jf030117h
  47. Brenes A, Viveros A, Goni I, et al. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult Sci 2008;87:307-16. https://doi.org/10.3382/ps.2007-00297
  48. Ahn JH, Grun IU, Fernando LN. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 2002;67:1364-9. https://doi.org/10.1111/j.1365-2621.2002.tb10290.x
  49. Hughes RJ, Brooker JD, Smyl C. Growth rate of broiler chickens given condensed tannins extracted from grape seed. Aust Poult Sci Symp 2005;67:65-8.
  50. Lau DW, King AJ. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J Agric Food Chem 2003;51:1602-7. https://doi.org/10.1021/jf020740m
  51. Manach C, Scalbert C, Morand C, Remezy C, Jimenez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004;79:727-47. https://doi.org/10.1093/ajcn/79.5.727
  52. Huang CW, Lee TT, Shih YC, Yu B. Effects of dietary supplementation of Chinese medicine herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J Anim Physiol Anim Nutr 2012;96:285-94. https://doi.org/10.1111/j.1439-0396.2011.01151.x
  53. Chao PY, Lin SY, Lin KH, et al. Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables. Nutrients 2014;6:2115-30. https://doi.org/10.3390/nu6052115
  54. Hseu YC, Chang WH, Chen CS, et al. Antioxidant activities of Toona sinensis leaves extracts using different antioxidant models. Food Chem Toxicol 2008;46:105-14. https://doi.org/10.1016/j.fct.2007.07.003
  55. Yang H, Gu Q, Gao T, et al. Flavonols and derivatives of gallic acid from young leaves of Toona sinensis (A. Juss.) Roemer and evaluation of their anti-oxidant capacity by chemical methods. Pharmacogn Mag 2014;10:185-90. https://doi.org/10.4103/0973-1296.131034
  56. Tilki M, Saatci M, Kirmizibayrak T, Aksoy A. Effect of age on growth and carcass composition of native Turkish geese. Archiv fur Geflugelkunde 2005;69(Suppl):E77-83.
  57. Jung KA, Kwak MK. The Nrf2 System as a potential target for the development of indirect antioxidant. Molecules 2010;15:7266-91. https://doi.org/10.3390/molecules15107266
  58. Mamede AC, Tavares SD, Abrantes AM, et al. The role of vitamins in cancer: a review. Nutr Cancer 2011;63:479-94. https://doi.org/10.1080/01635581.2011.539315
  59. Barve A, Khor TO, Hao X, et al. Murine prostate cancer inhibition by dietary phytochemicals - curcumin and phenyethylisothiocyanate. Pharm Res 2008;25:2181-9. https://doi.org/10.1007/s11095-008-9574-7
  60. Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with anti-inflammatory. Antioxid Redox Signal 2010;13:1679-98. https://doi.org/10.1089/ars.2010.3276
  61. Shen GG, Kong AN. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos 2009;30:345-55. https://doi.org/10.1002/bdd.680
  62. Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85:241-72. https://doi.org/10.1007/s00204-011-0674-5
  63. Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 2006;26:221-9. https://doi.org/10.1128/MCB.26.1.221-229.2006
  64. Takaya K, Suzuki T, Motohashi H, et al. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radical Bio Med 2012;53:817-27. https://doi.org/10.1016/j.freeradbiomed.2012.06.023
  65. Saw CL, Yang AY, Cheng DC, et al. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 2012;25:1574-80. https://doi.org/10.1021/tx2005025
  66. Beeche GR. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 2003;133(Suppl):E3248-54. https://doi.org/10.1093/jn/133.10.3248S
  67. Sahin K, Tuzcu M, Gencoglu H, et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci 2010;87:240-5. https://doi.org/10.1016/j.lfs.2010.06.014
  68. Romeo L, Intrieri M, D'Agata V, et al. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 2009;28(Suppl_:E492-9. https://doi.org/10.1080/07315724.2009.10718116
  69. Katiyar SK, Afaq F, Perez A, Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 2001; 22:287-94. https://doi.org/10.1093/carcin/22.2.287
  70. Meng Q, Velalar CN, Ruan R. Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast. Free Radical Bio Med 2008;44: 1032-41. https://doi.org/10.1016/j.freeradbiomed.2007.11.023
  71. Wei H, Zhang X, Zhao JF, et al. Scavenging of hydrogen peroxide and nhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radical Bio Med 1999;26:1427-35. https://doi.org/10.1016/S0891-5849(99)00005-2
  72. Ali NAL, Mohammed AB, Allow AA. Effect of adding different levels of Lycopene to the ration on some lipid profile traits of the Laying hens ISA-Brown. J Biol Agric Healthc 2014;4:10-9.
  73. Palozza P, Catalano A, Simone R, Cittadini A. Lycopene as a guardian of redox signalling. Acta Biochim Pol 2012;59:221-5.
  74. Linnewiel K, Ernst H, Caris-Veyrat C, et al. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med 2009;47:659-67. https://doi.org/10.1016/j.freeradbiomed.2009.06.008
  75. Lian F, Wang XD. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer 2008;123:1262-8. https://doi.org/10.1002/ijc.23696
  76. He HJ, Wang GY, Gao Y, et al. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 2012;3:94-104. https://doi.org/10.4239/wjd.v3.i5.94
  77. Tapia E, Zatarain-Barron ZL, Hernandez-Pando R, et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine 2013;20:359-66. https://doi.org/10.1016/j.phymed.2012.11.014
  78. Garg R, Maru G. Dietary curcumin enhances benzo(a)pyrene-induced apoptosis resulting in a decrease in BPDE-DNA adducts in mice. J Environ Pathol Toxicol Oncol 2009;28:121-31. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i2.40
  79. Cheng H, Liu W, Ai X. Protective effect of curcumin on myocardial ischemia reperfusion injury in rats. Zhong Yao Cai 2005;28:920-2.
  80. Ahmadi F. Effect of Turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broilers fed on diets containing aflatoxin. Glob Vet 2010;5:312-7.
  81. Balogun E, Hoque M, Gong P, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003;371:887-95. https://doi.org/10.1042/bj20021619
  82. Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamatecysteine ligase gene expression. FASEB J 2003;17:473-5. https://doi.org/10.1096/fj.02-0566fje
  83. Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 2008;46:1279-87. https://doi.org/10.1016/j.fct.2007.09.095
  84. Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 2007;595:149-72.
  85. Mancuso C, Barone E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab 2009; 10:579-94. https://doi.org/10.2174/138920009789375405
  86. Liu Y, Chan F, Sun H, et al. Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur J Pharmacol 2011;650:130-7. https://doi.org/10.1016/j.ejphar.2010.10.009
  87. Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 2011;1812:719-31. https://doi.org/10.1016/j.bbadis.2011.03.008
  88. Ungvari Z, Bagi Z, Feher A, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 2010;299:18-24. https://doi.org/10.1152/ajpheart.00260.2010
  89. Lopez-Velez M, Martinez-Martinez F, Del Valle-Ribes C. The study of phenoliccompounds as natural antioxidants in wine. Crit Rev Food Sci Nutr 2003;43:233-44. https://doi.org/10.1080/10408690390826509
  90. Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004;489:39-48. https://doi.org/10.1016/j.ejphar.2004.02.031
  91. Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008;591:66-72. https://doi.org/10.1016/j.ejphar.2008.06.067
  92. Wu CH, Chen SC, Ou TT, Chyau CC, Chang YC, Wang CJ. Mulberry leaf polyphenol extracts reduced hepatic lipid accumulation involving regulation of adenosine monophosphate activated protein kinase and lipogenic enzymes. J Funct Foods 2013;5:1620-32. https://doi.org/10.1016/j.jff.2013.07.004
  93. Chan KC, Ho HH, Huang CN, Chen MC, Wang CJ. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals. J Agric Food Chem 2009;57:9147-53. https://doi.org/10.1021/jf902507k
  94. Gundogdu M, Muradoglu F, Gazioglu Sensoy RI, Yilmaz H. Determination of fruit chemical properties of M. nigra L., M. alba L. and M. rubra L. by HPLC. Sci Hortic 2011;132:37-41. https://doi.org/10.1016/j.scienta.2011.09.035
  95. Andallu B, Shankaran M, Ullagaddi R, Iyer U. In vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J Herb Med 2014;4:10-17. https://doi.org/10.1016/j.hermed.2013.10.002
  96. Lin WC, Lee MT, Chang YL, Shih CH, Chang SC, Yu B, Lee TT. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult Sci 2016; DOI: 10.3382/ps/pew350.

Cited by

  1. Rationale for Dietary Antioxidant Treatment of ADHD vol.10, pp.4, 2018, https://doi.org/10.3390/nu10040405
  2. feed supplement pp.09312439, 2019, https://doi.org/10.1111/jpn.13014
  3. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review vol.17, pp.6, 2018, https://doi.org/10.1111/1541-4337.12386
  4. Anti-oxidant and anti-microbial study of Adiantum capillus veneris and Pteris quadriureta L vol.12, pp.23, 2018, https://doi.org/10.5897/JMPR2018.6635
  5. plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications vol.32, pp.9, 2018, https://doi.org/10.1002/ptr.6101
  6. Effects of dietary alfalfa flavonoids on the performance, meat quality and lipid oxidation of growing rabbits vol.31, pp.2, 2018, https://doi.org/10.5713/ajas.17.0284
  7. Immunomodulatory effects of phytogenics in chickens and pigs — A review vol.31, pp.5, 2018, https://doi.org/10.5713/ajas.17.0657
  8. Psoralen Induces Developmental Toxicity in Zebrafish Embryos/Larvae Through Oxidative Stress, Apoptosis, and Energy Metabolism Disorder vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.01457
  9. Insight into the Hydrolytic Selectivity of β -Glucosidase to Enhance the Contents of Desired Active Phytochemicals in Medicinal Plants vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/4360252
  10. Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders vol.119, pp.2, 2017, https://doi.org/10.1017/s0007114517003397
  11. Effects of lycopene and tomato paste on oxidative stability and fatty acid composition of fresh belly meat in finishing pigs vol.18, pp.1, 2017, https://doi.org/10.1080/1828051x.2018.1549963
  12. Antioxidant capacity of banana peel and its modulation of Nrf2-ARE associated gene expression in broiler chickens vol.18, pp.1, 2019, https://doi.org/10.1080/1828051x.2019.1667884
  13. Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy vol.7, pp.4, 2017, https://doi.org/10.3390/microorganisms7040097
  14. PHYTOCHEMICAL SCREENING OF POLYHERBAL COMPOSITION BASED ON Portulaca oleracea AND IT’S EFFECT ON MACROPHAGE OXIDATIVE METABOLISM vol.12, pp.2, 2017, https://doi.org/10.15407/biotech12.02.063
  15. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway vol.14, pp.5, 2017, https://doi.org/10.1371/journal.pone.0216711
  16. Effect of Feed Selenium-lysine Supplementation on Milk Compositions and Serum Biochemical Indices in Saanen Dairy Goats vol.53, pp.4, 2017, https://doi.org/10.14397/jals.2019.53.4.61
  17. How Dietary Diversity Enhances Hedonic and Eudaimonic Well-Being in Grazing Ruminants vol.7, pp.None, 2017, https://doi.org/10.3389/fvets.2020.00191
  18. RETRACTED: A survey of the secondary exposure to organophosphate and organochlorine pesticides and the impact of preventive factors in female villagers vol.240, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2019.124887
  19. Nutraceutical Boom in Cancer: Inside the Labyrinth of Reactive Oxygen Species vol.21, pp.6, 2017, https://doi.org/10.3390/ijms21061936
  20. Characterization of Leucas aspera and evaluation of antioxidant activities before and after being subjected to digestion enzymes vol.26, pp.3, 2017, https://doi.org/10.1080/19315260.2019.1630540
  21. Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk vol.33, pp.7, 2017, https://doi.org/10.5713/ajas.19.0393
  22. Dissimilar effects of curcumin on human granulosa cells: Beyond its anti-oxidative role vol.95, pp.None, 2017, https://doi.org/10.1016/j.reprotox.2020.04.069
  23. The Potential of Phytochemicals in Oral Cancer Prevention and Therapy: A Review of the Evidence vol.10, pp.8, 2017, https://doi.org/10.3390/biom10081150
  24. Buckwheat Secondary Metabolites: Potential Antifungal Agents vol.68, pp.42, 2020, https://doi.org/10.1021/acs.jafc.0c04538
  25. Optimization of Eugenia punicifolia (Kunth) D. C. leaf extraction using a simplex centroid design focused on extracting phenolics with antioxidant and antiproliferative activities vol.14, pp.1, 2017, https://doi.org/10.1186/s13065-020-00686-2
  26. Unveiling the Anti-cancer Efficiency of Chebulagic Acid-Mediated Apoptotic Mechanisms in HepG2 Cell Line vol.17, pp.4, 2021, https://doi.org/10.3923/ijp.2021.229.242
  27. Assessment of Food By-Products’ Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone vol.13, pp.1, 2017, https://doi.org/10.3390/toxins13010002
  28. Protective effect of Catharanthus roseus plant extracts against endosulfan and its isomers induced impacts on non-targeted insect model, Drosophila melanogaster and live brain cell imaging vol.240, pp.None, 2017, https://doi.org/10.1016/j.cbpc.2020.108916
  29. Effects of polystyrene microparticles on inflammation, antioxidant enzyme activities, and related gene expression in Nile tilapia (Oreochromis niloticus) vol.28, pp.12, 2017, https://doi.org/10.1007/s11356-020-11731-x
  30. Effects of Diet and Phytogenic Inclusion on the Antioxidant Capacity of the Broiler Chicken Gut vol.11, pp.3, 2021, https://doi.org/10.3390/ani11030739
  31. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity vol.34, pp.3, 2017, https://doi.org/10.5713/ab.20.0842
  32. Production performances and antioxidant activities of laying hens fed Aspergillus oryzae and phytase co-fermented wheat bran vol.34, pp.3, 2017, https://doi.org/10.5713/ajas.20.0116
  33. Effects of dietary supplementation with Taiwanese tea byproducts and probiotics on growth performance, lipid metabolism, and the immune response in red feather native chickens vol.34, pp.3, 2017, https://doi.org/10.5713/ajas.20.0223
  34. Yucca schidigera extract mediated the growth performance, hepato‐renal function, antioxidative status and histopathological alterations in Nile tilapia (Oreochromis niloticus) exposed to hypoxia vol.52, pp.5, 2021, https://doi.org/10.1111/are.15045
  35. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094811
  36. Heat Stress in Broiler Chickens and the Effect of Dietary Polyphenols, with Special Reference to Willow (Salix spp.) Bark Supplements-A Review vol.10, pp.5, 2017, https://doi.org/10.3390/antiox10050686
  37. Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production vol.13, pp.15, 2017, https://doi.org/10.3390/su13158467
  38. Intestinal Microbiota, Anti-Inflammatory, and Anti-Oxidative Status of Broiler Chickens Fed Diets Containing Mushroom Waste Compost By-Products vol.11, pp.9, 2017, https://doi.org/10.3390/ani11092550
  39. Effects of Deoxynivalenol and Fumonisins on Broiler Gut Cytoprotective Capacity vol.13, pp.10, 2017, https://doi.org/10.3390/toxins13100729
  40. Understanding the Functional Activity of Polyphenols Using Omics-Based Approaches vol.13, pp.11, 2017, https://doi.org/10.3390/nu13113953
  41. Trichoderma reesei fungal degradation boosted the potentiality of date pit extract in fighting scopolamine-induced neurotoxicity in male rats vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-94058-y
  42. Dietary Supplementation with Microalgae (Schizochytrium sp.) Improves the Antioxidant Status, Fatty Acids Profiles and Volatile Compounds of Beef vol.11, pp.12, 2017, https://doi.org/10.3390/ani11123517
  43. Effects of Dietary Resveratrol Supplementation on Growth Performance and Anti-Inflammatory Ability in Ducks (Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB Signaling Pathways vol.11, pp.12, 2017, https://doi.org/10.3390/ani11123588
  44. Mitigation of cisplatin induced nephrotoxicity by casticin in male albino rats vol.83, pp.None, 2023, https://doi.org/10.1590/1519-6984.243438