DOI QR코드

DOI QR Code

Analysis of Debonding between Mixed Finite Elements for Saturated Porous Media

혼합유한요소를 통한 다공질매체의 요소분리해석

  • Tak, Moonho (Department of Civil and Environmental Engineering, Hanyaing University) ;
  • Lee, Janggeun (Geotechnical Division, Korea Institute of Construction Technology) ;
  • Ban, Hoki (Department of Civil Engineering, Kangwon National University) ;
  • Kang, Jaemo (Geotechnical Division, Korea Institute of Construction Technology)
  • Received : 2016.12.06
  • Accepted : 2017.01.20
  • Published : 2017.02.01

Abstract

In this paper, we propose a new method to debond between mixed finite elements for porous media in ABAQUS (2014). ABAQUS just provides debonding algorithm for the u-p model using cohesive elements in standard version. However, this approach has a drawback that it is hard to simulate complex debonding problems like element separation, rigid body motion, and contact between separated elements in standard version. ABAQUS-explicit can resolve these complex problems, but cohesive elements for the u-p model cannot be applied. We introduce a new algorithm for debonding for porous media instead of using cohesive elements. In this method, subroutines VUMAT to apply constitutive models and VDISP to separate elements in ABAQUS are used to simulate debonding problems. In addition, a simple 2-D example is demonstrated in the ABAQUS-explicit solver.

본 연구에서는 ABAQUS(2014)를 이용한 다공질 매체의 혼합유한요소해석에서 요소 간의 분리를 모사할 수 있는 방법을 제안한다. ABAQUS에서는 변위과 간극수압(u-p모델)의 자유도를 갖는 혼합유한요소의 분리를 standard(implicit) 버전 상에서 cohesive element와 함께 해석을 제안하지만, 요소 간의 이탈, 강체운동, 접촉 등과 같은 분리현상에 대해서는 경계조건 문제로 수치 해석상 한계가 있다. ABAQUS-explicit 해석에서는 경계조건 문제에 대해 자유롭지만 지금까지의 혼합요소 간의 분리를 제공하고 있지 않다. 그러므로, 본 연구에서는 ABAQUS-explicit 상에서 u-p 모델에 대한 분리를 모사할 수 있는 새로운 접근방법이 제안된다. VUMAT 서브루틴을 통하여 구성모델이 적용되고, 간극수압 변화에 따른 요소의 분리 조건을 판단한다. 그리고 VDISP 서브루틴을 통하여 요소의 분리를 발생시킨다. 이렇게 제안된 알고리즘은 간단한 2차원 다공질 매체 예제를 통하여 구현된다.

Keywords

References

  1. ABAQUS User Manual Version 6.16 (2014), Hibbt, Karlson & Sorenson, Inc., Pawtucket, R. I.
  2. Biot, M. (1941) "General theory of three-dimensional consolidation", Journal of Applied Physics, Vol. 12, No. 1, pp. 155-164. https://doi.org/10.1063/1.1712886
  3. Bowen, R. M. (1980), "Incompressible porous media models by use of the theory of mixtures," International Journal of Engineering Science, Vol. 18, No. 9, pp. 1129-1148. https://doi.org/10.1016/0020-7225(80)90114-7
  4. Coussy, O. (1995), Mechanics of porous continua, Wiley, Chichester.
  5. Goodman, M. and Cowin, S. (1972), "A continuum theory for granular materials", Archive for Rational Mechanics and Analysis, Vol. 44, No. 4, pp. 249-266. https://doi.org/10.1007/BF00284326
  6. Hassanizadeh, S. and Gray, W. (1979), "General conservation equations for multi-phase systems: Averaging procedure", Advances in Water Resources, Vol. 2, pp. 131-144. https://doi.org/10.1016/0309-1708(79)90025-3
  7. Park, T. and Tak, M. (2010), "A New Coupled Analysis for Nearly Incompressible and Impermeable Saturated Porous Media on Mixed Finite Element Method: I. Proposed Method", KSCE Journal of Civil Engineering, Vol. 14, No. 1, pp. 7-16. https://doi.org/10.1007/s12205-010-0007-x
  8. Terzaghi, K. (1925), "Erdbaumechanik auf bodenphysikalischer grundlage", Franz Deuticke, Leipzig und Wein, p. 399.
  9. Zienkiewicz, O. C., Chang, C. T. and Bettess, P. (1980), "Drained, Undrained, Consolidating and Dynamic Behavior Assumptions in Soils", Geotechnique, Vol. 30, No. 4, pp. 385-395. https://doi.org/10.1680/geot.1980.30.4.385