DOI QR코드

DOI QR Code

내부정합된 GaN HMET를 이용한 광대역 J-급 전력증폭기 설계

Wideband Class-J Power Amplifier Design Using Internal Matched GaN HEMT

  • 투고 : 2016.10.24
  • 심사 : 2017.01.17
  • 발행 : 2017.02.28

초록

이동통신 시스템의 멀티미디어 서비스 확산과 고속통신 기능의 수요를 충족시키기 위해서 다중대역 전력증폭기의 고효율, 광대역 특성 및 비선형 특성의 개선이 필요하다. 본 연구에서는 J-급 전력증폭기 동작조건을 만족하는 2차 고조파 정합회로를 단일-스터브 정합회로로 구성하였다. 광대역 J-급 동작조건을 만족시키기 위해 단일-스터브 정합회로는 낮은 특성임피던스를 갖는 것이 필요하다. 본 연구에서는 낮은 특성 임피던스를 갖는 단일-스터브 정합회로를 패키지 내에 높은 유전율의 세라믹 기판을 이용하여 구현하였다. 이에 따라 2차 고조파 정합회로가 패키지된 GaN HEMT와 외부 기본파 정합회로를 이용하여 넓은 주파수 대역에서 J-급 출력 임피던스 조건을 만족하는 전력증폭기를 구현하였다. 제작된 J-급 전력증폭기 측정 결과, 1.8~2.7 GHz(900 MHz)의 대역폭에서 50 W(47 dBm) 이상의 출력전력과 최대 72.6 %의 드레인 효율, 최대 66.5 %의 PAE 특성을 확인하였다.

In order to satisfy the diffusion of multimedia service in mobile communication and the demand for high-speed communication, it is essential to modify and improve high efficiency, wideband and nonlinear characteristic of multiband power amplifier. This research is designed to implement a single-stub matching circuit as a 2nd harmonic one that meets conditions of the Class-J power amplifier. Low characteristic impedance of the single-stub line is necessary to suit conditions of wideband Class-J. This research uses ceramic substrates having high permittivity to implement the single-stub line with low characteristic impedance, which eventually results in an amplifier satisfying the output impedance terms of Class-J in wideband frequency range. This result attributes to use of GaN HEMT packaged with a 2nd harmonic matching circuit and external fundamental circuit. The measurement results of the Class-J amplifier confirms the following characteristics: more than output power of 50 W(47 dBm) in bandwidth of 1.8~2.7 GHz(0.9GHz), maximum drain efficiency of 72.6 %, and maximum PAE characteristic of 66.5 %.

키워드

참고문헌

  1. Aarno Parssinen, "Multimode-multiband transceivers for next generation of wireless communications", 2011 European Solid-State Device Research Conference(ESSDERC), pp. 42-53. Sep. 2011.
  2. A. Sigg, S. Heck, A. Brackle, and M. Berroth, "High efficiency GaN current-mode class-D amplifier at 2.6 GHz using pure differential transmission line filters", Electronics Letters, vol. 49, no. 1, pp. 47-49, Jan. 2013. https://doi.org/10.1049/el.2012.3984
  3. Philip A. Godoy, SungWon Chung, Taylor W. Barton, David J. Perreault, and Joel L. Dawson, "A highly efficient 1.95-GHz, 18-W asymmetric multilevel outphasing transmitter for wideband applications", IEEE MTT-S International Microwave Symposium Digest, Jun. 2011.
  4. Song Liu, Dominique Schreurs, "Intrinsic class-F RF GaN power amplifier with a commercial transistor based on a modified "Hybrid" approach", 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits, Sep. 2012.
  5. Yingjie Xu, Jingqi Wang, and Xiaowei Zhu, "Analysis and implementation of inverse class-F power amplifier for 3.5 GHz transmitter", 2010 Asia-Pacific Microwave Conference, pp. 410-413, Dec. 2010.
  6. Andrei Grebennikov, Nathan Sokal, Switchmode RF Power Amplifier, Newnes, 2007.
  7. Andrei Grebennikov, "A high-efficiency transmission-line GaN HEMT Class-E power amplifier", High Frequency Electronics, pp. 16-24, Dec. 2009.
  8. David Schmelzer, Stephen I. Long, "A GaN HEMT Class-F amplifier at 2 GHz with > 80 % PAE", IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2130-2136, Oct. 2007. https://doi.org/10.1109/JSSC.2007.904317
  9. Steve C. Cripps, RF Power Amplfiers for Wireless Communications, 2nd Edition, Boston MA: Artech, 2006.
  10. Tongning Wu, Calvin Plett, Jhon W. M. Rogers, and Ming Li, "A fully integrated 1-4 GHz GaN Class-J power amplifier", 2014 IEEE 15th Wireless and Microwave Technology Conference, Jun. 2014.
  11. Motoyoshi Iwata, Tomohide Kamiyama, Takachi Uno, Kaxuhiro Yahata, and Hikaru Ikeda, "First pass design of a high power 145W, high efficiency Class-J GaN power amplifier using waveform engineering", IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, pp. 7-9, Jan. 2013.
  12. Zhenyang Wang, Guang Yang, and Falin Kiu, "An easily implementable structure for broad band high efficiency Class-J power amplifier", IEEE Workshop Electronics, Computer and Applications, pp. 786-790, May 2014.
  13. Li Ma, Fei You, and Xianyun Hou, "An output match design method for high efficiency and broadband Class-J PA", IEEE Topical Conference Power Amplifiers for Wireless and Radio Applications(PAWR), 43-45, Jan. 2014.
  14. K. Mimis, K. A. Morris, and J. P. McGeehan, "A 2 GHz GaN Class-J power amplifier for base station applications", IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, pp. 5-8, Jan. 2011.
  15. Peter Wright, Jonathan Lees, Johannes Benedikt, Paul J. Tasker, and Steve C. Cripps, "A methodology for realizing high efficiency Class-J in linear and broadband PA", IEEE Transactions Microwave Theory Techniques, vol. 57, no. 12, pp. 3196-3204, Dec. 2009. https://doi.org/10.1109/TMTT.2009.2033295
  16. Rui Ma, Sushmit Goswami, Koji Yamanaka, Yuji Komatsuzaki, and Akira Ohta, "A 40-dBm high voltage broadband GaN Class-J power amplifier for PoE micro-basestations", IEEE MTT-S International Microwave Symposium Dig., Jun. 2013.
  17. Saeed Rezaei, Leonid Belostotski, and Fadhel M. Ghannouchi, "1.6-3 GHz, 10 W, 60 % efficiency Class-J PA for cognitive radio applications", 2013 IEEE 60th International Midwest Symposium Circuits and Systems, pp. 880-883, Aug. 2013.