DOI QR코드

DOI QR Code

산수용액에서 처리된 흑연 구조와 열적 특성

Structural and Thermal Characteristics of Graphites Treated in Acidic Solutions

  • Song, Seung Won (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Min, Eui Hong (Solueta, Ltd., Research Center) ;
  • Lee, Dong Won (Solueta, Ltd., Research Center) ;
  • Kim, Jungsoo (Biomedical R&D Center, Pusan National University Hospital) ;
  • Oh, Weontae (Department of Advanced Materials Engineering, Dong-Eui University)
  • 투고 : 2016.11.04
  • 심사 : 2017.01.03
  • 발행 : 2017.02.27

초록

Natural and expandable graphites were chemically treated in acidic aqueous solutions such as acetic acid or mixtures of acetic acid and nitric acid. Structures and thermal conductivities of the as-treated graphites were characterized in detail. Both graphites were significantly oxidized in the mixed acidic solution of $H_2SO_4$ and $HNO_3$, which condition was generally used for the oxidation of carbon nanotubes. This considerable oxidation of graphites caused a depression of their thermal conductivity. The structural characteristics, obtained by XRD and XPS, show that the graphites treated in the relatively weak acidic conditions (acetic acid or mixture of acetic acid and nitric acid) were quite similar to the untreated graphites. However, the thermal conductivities of both acidic-treated graphites were remarkably increased.

키워드

참고문헌

  1. W. Zhou, D. Yu, C. Min, Y. Fu and X. Guo, J. Appl. Polym. Sci., 112, 1695(2009). https://doi.org/10.1002/app.29602
  2. G. W. Lee, J. Kim, J. Yoon, J. S. Bae, B. C. Shin, I. S. Kim, W. Oh and M. Ree, Thin Solid Films, 516, 5781 (2008). https://doi.org/10.1016/j.tsf.2007.10.071
  3. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science, 280, 1253 (1998). https://doi.org/10.1126/science.280.5367.1253
  4. Y. K. Chen, M. L. H. Green, J. L. Griffin, J. Hammer, R. M. Lago and S. C. T sang, Adv. Mater., 8, 1012 (1996). https://doi.org/10.1002/adma.19960081216
  5. W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  6. G. W. LeeandS. Kumar, J. Phys. Chem. B., 109, 17128 (2005). https://doi.org/10.1021/jp052943u
  7. G.-W. Lee, J. Kim, J. Yoon, J.-S. Bae, B. C. Shin, I. S. Kim, W. Oh and M. Ree, Thin Solid Films, 516, 5781 (2008). https://doi.org/10.1016/j.tsf.2007.10.071
  8. J. Liu, A.G. Rinzler and H. J. Dai, Science, 280, 1253 (1998). https://doi.org/10.1126/science.280.5367.1253
  9. Y. K. Chen, M. L. H. Green, J. L. Griffin, J. Hammer, R. M. Lago and S. K. Tsang, Adv. Mater., 8, 1012 (1996). https://doi.org/10.1002/adma.19960081216
  10. M. Koo, J.-S. Bae, S. E. Shim, D. Kim, D.-G. Nam, J.- W. Lee, G.-W. Lee, J. H. Yeum and W. Oh, Colloid Polymer Sci., 289, 1503 (2011). https://doi.org/10.1007/s00396-011-2469-x
  11. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/B917103G
  12. A. C. Ferrari, Solid State Comm., 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
  13. F. Tuinstra and J. L. Koenig. J. Chem. Phys., 53, 1126 (1970). https://doi.org/10.1063/1.1674108
  14. A. Lerf, H. He, M. Forster and J. Klinowski, J. Phys. Chem. B., 102, 4477 (1998). https://doi.org/10.1021/jp9731821
  15. L T. Szabo and O. Berkesi, Carbon, 43, 3186 (2005). https://doi.org/10.1016/j.carbon.2005.07.013
  16. N. I. Kovtyukhova, Y. Wang, A. Berkdemir, R. Cruz-Silva, M. Terrones, V. H. Crespi and T. E. Mallouk, Nat. Chem., 6, 957 (2014). https://doi.org/10.1038/nchem.2054