DOI QR코드

DOI QR Code

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing

  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 투고 : 2016.11.09
  • 심사 : 2016.12.22
  • 발행 : 2017.02.27

초록

Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.

키워드

참고문헌

  1. B. O' Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. C. Longo and M. A. D. Paoli, J. Braz. Chem. Soc., 14, 889 (2003).
  3. A. Kay and M. Gratzel, Sol. Energ. Mater. Sol. C., 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  4. Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang and Y. Deng, Electrochem. Commun., 11, 1768 (2009). https://doi.org/10.1016/j.elecom.2009.07.018
  5. E. Olsen, G. Hagen and S. E. Lindquist, Sol. Energy Mater. Sol. C., 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  6. Y. Noh, B. Yu, K. Yoo, M. Ko and O. Song, Korean J. Met, Mater., 50, 243 (2012).
  7. K. Mokurala, A. Kamble, P. Bhargava and S. Mallick, J. Electron. Mater., 44, 4400 (2015). https://doi.org/10.1007/s11664-015-3957-4
  8. D. W. Zhang, X. D. Li, H. B. Li, S. Chen, Z. Sun, X. J. Yin and S. M. Huang, Carbon, 49, 5382 (2011). https://doi.org/10.1016/j.carbon.2011.08.005
  9. S. Widodo, G. Wiranto and M. N. Hidayat, Energy Procedia, 68, 37 (2015). https://doi.org/10.1016/j.egypro.2015.03.230
  10. J. Jia, J. Wu, Y. Tu, J. Huo, M. Zheng and J. Lin, J. Alloy Compd., 640, 29 (2015). https://doi.org/10.1016/j.jallcom.2015.03.233
  11. W. Zhou, X. Jia, L. Chen, Z. Yin, Z. Zhang and G. Gao, Mater. Lett., 163, 1 (2016). https://doi.org/10.1016/j.matlet.2015.09.135
  12. K. Kim, Y. Noh, M. Choi and O. Song, Korean J. Met, Mater., 54, 615 (2016). https://doi.org/10.3365/KJMM.2016.54.8.615
  13. H. S. Kim, J. H. Lee and G. Y. Yeom, J. Korean Inst. Electr. Electron. Mater. Eng., 8, 619 (1995).
  14. Y. Cao, L. Nyborg and U. Jelvestam, Surf. Interface Anal., 41, 471 (2009). https://doi.org/10.1002/sia.3050
  15. E. G. Colgan, M. Maenpaa, M. Finetti and M. A. Nicolet, J. Electron. Mater., 12, 413 (1983). https://doi.org/10.1007/BF02651140
  16. F. F. Santigo, J. Bisquert, E. Palomares, L. Oterio, D. Kuang, M. Zakeeruddin and M. Gratzel, J. Phys. Chem. C, 111, 6550 (2007). https://doi.org/10.1021/jp066178a