References
- Baker, B.M., and Chen, C.S. (2012). Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015-3024. https://doi.org/10.1242/jcs.079509
- Dixon, J.E., Shah, D.A., Rogers, C., Hall, S., Weston, N., Parmenter, C.D., McNally, D., Denning, C., and Shakesheff, K.M. (2014). Combined hydrogels that switch human pluripotent stem cells from selfrenewal to differentiation. Proc. Natl. Acad. Sci. USA 111, 5580-5585. https://doi.org/10.1073/pnas.1319685111
- Donato, M.T., Castell, J.V., and Gomez-Lechon, M.J. (1999). Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J. Hepatol. 31, 542-549. https://doi.org/10.1016/S0168-8278(99)80049-X
- Gerecht, S., Burdick, J.A., Ferreira, L.S., Townsend, S.A., Langer, R., and Vunjak-Novakovic, G. (2007). Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 11298-11303. https://doi.org/10.1073/pnas.0703723104
- Hughes, G.C., Post, M.J., Simons, M., and Annex, B.H. (2003). Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J. Appl. Physiol. 94, 1689-1701. https://doi.org/10.1152/japplphysiol.00465.2002
- Jang, M., Lee, S.T., Kim, J.W., Yang, J.H., Yoon, J.K., Park, J.C., Ryoo, H.M., van der Vlies, A.J., Ahn, J.Y., Hubbell, J.A., et al. (2013). A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials 34, 3571-3580. https://doi.org/10.1016/j.biomaterials.2013.01.073
- Lee, S.T., Yun, J.I., Jo, Y.S., Mochizuki, M., van der Vlies, A.J., Kontos, S., Ihm, J.E., Lim, J.M., and Hubbell, J.A. (2010). Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31, 1219-1226. https://doi.org/10.1016/j.biomaterials.2009.10.054
- Lee, S.T., Yun, J.I., van der Vlies, A.J., Kontos, S., Jang, M., Gong, S.P., Kim, D.Y., Lim, J.M., and Hubbell, J.A. (2012). Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3. Biomaterials 33, 8934-8942. https://doi.org/10.1016/j.biomaterials.2012.08.062
- Lou, Y.R., Kanninen, L., Kaehr, B., Townson, J.L., Niklander, J., Harjumaki, R., Jeffrey Brinker, C., and Yliperttula, M. (2015). Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells. Sci. Rep. 5, 13635. https://doi.org/10.1038/srep13635
- Lunney. J.K. (2007). Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3, 179-184.
- Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., and Gerdts, V. (2012). The pig: a model for human infectious diseases. Trends Microbiol. 20, 50-57. https://doi.org/10.1016/j.tim.2011.11.002
- Musah S., Morin S.A., Wrighton P.J., Zwick, D.B., Jin, S., and Kiessling, L.L. (2012). Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6, 10168-10177. https://doi.org/10.1021/nn3039148
- Pampaloni F., Reynaud E.G., and Stelzer E.H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839-845. https://doi.org/10.1038/nrm2236
- Son, H.Y., Kim J.E., Lee, S.G., Kim, H.S., Lee, E., Park, J.K., Ka, H., Kim, H.J., and Lee, C.K. (2009). Efficient derivation and long term maintenance of pluripotent porcine embryonic stem-like cells. Asian-Aust J. Anim. Sci. 22, 26-34. https://doi.org/10.5713/ajas.2009.80343
- Ulrich T.A., Lee T.G., Shon H.K., Moon, D.W., and Kumar, S. (2011). Microscale mechanisms of agarose-induced disruption of collagen remodeling. Biomaterials 32, 5633-5642. https://doi.org/10.1016/j.biomaterials.2011.04.045
- Valdes-Gonzalez, R.A., Dorantes, L.M., Garibay, G.N., Bracho-Blanchet, E., Mendez, A.J., Davila-Perez, R., Elliott, R.B., Teran, L., and White, D.J. (2005). Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur. J. Endocrinol. 153, 419-427. https://doi.org/10.1530/eje.1.01982
- Van Cott, K.E., and Velander, W.H. (1998). Transgenic animals as drug factories: a new source of recombinant protein therapeutics. Exp. Opin. Investig. Drugs 7, 1683-1690. https://doi.org/10.1517/13543784.7.10.1683
- Vassiliev, I., Vassilieva, S., Beebe, L.F., Harrison, S.J., McIlfatrick, S.M., and Nottle, M.B. (2010). In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram 12, 223-230. https://doi.org/10.1089/cell.2009.0053
- Walters, E.M., Wolf, E., Whyte, J.J., Mao, J., Renner, S., Nagashima, H., Kobayashi, E., Zhao, J., Wells, K.D., Critser, J.K., et al. (2001). Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med. Genomics 5, 55.
- Yuguo, L., and David, V.S. (2013). A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl. Acad. Sci. USA 110, E5039-5048. https://doi.org/10.1073/pnas.1309408110
Cited by
- Identification of integrin heterodimers functioning on the surface of undifferentiated porcine primed embryonic stem cells vol.42, pp.9, 2018, https://doi.org/10.1002/cbin.10993
- Heterologous Expression of Transcription Factor AtWRKY57 Alleviates Salt Stress-Induced Oxidative Damage vol.12, pp.1, 2017, https://doi.org/10.2174/1874070701812010204
- Establishment of In-Vitro Culture System for Enhancing Production of Somatic Cell Nuclear Transfer (SCNT) Blastocysts with High Performance in the Colony Formation and Formation of Colonies Derived fr vol.34, pp.2, 2017, https://doi.org/10.12750/jarb.34.2.130
- Induction of PrMADS10 on the lower side of bent pine tree stems: potential role in modifying plant cell wall properties and wood anatomy vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-55276-7
- Livestock pluripotency is finally captured in vitro vol.32, pp.2, 2020, https://doi.org/10.1071/rd19272
- Dynamic architecture and regulatory implications of the miRNA network underlying the response to stress in melon vol.17, pp.2, 2020, https://doi.org/10.1080/15476286.2019.1697487
- Effects of in vitro Culture Period of Reconstructed Embryos and Genetic Background of Feeder Cells on Establishment of Embryonic Stem Cells Derived from Somatic Cell Nuclear Transfer Blastocysts in Pi vol.35, pp.1, 2020, https://doi.org/10.12750/jarb.35.1.86