초록
In this study, the force tracking performance of the single-rod and double-rod type EHAs (Electro-Hydrostatic Actuators) was compared by computer simulation and experiments. The force-controlled EHAs exhibit non-linear behavior that are significantly dependent on operation conditions. The investigation focused on localizing the parameters that provide significant rise to the non-linearity. For this, the single-rod and double-rod type EHAs were mathematically expressed to derive their linear models. In parallel, they were modeled by a commercial simulation program including non-linear properties based on experimental results. It was shown that the dependency of the bulk modulus of oil with entrapped air on working pressure dominated the non-linearity in force control performance in case of the double-rod type EHA. The force control of the single-rod type EHA was influenced by much more elements. Besides the asymmetrical piston geometry and the non-linear bulk modulus of oil, its pilot-operated check valves made it dependent not only on the magnitude of reference input but also on its direction.