Students' Recognition and Representation of the Rate of Change in the Given Range of Intervals

구간에서의 변화율에 대한 인식과 표현에 대한 연구

  • Received : 2016.11.30
  • Accepted : 2017.02.07
  • Published : 2017.02.28

Abstract

This study investigated three $10^{th}$ grade students' concept of rate of change while they perceived changing values of given functions. We have conducted a teaching experiment consisting of 6 teaching episodes on how the students understood and expressed changing values of functions on certain intervals in accordance with the concept of rate of change. The result showed that the students did use the same word of 'rate of change' in their analysis of functions, but their understanding and expression of the word varied, which turned out to have diverse perceptions with regard to average rate of change. To consider these differences as qualitatively different levels might need further research, but we expect that this research will serve as a foundational study for further research in students' learning 'differential calculus' from the perspective of rate of change.

본 연구에서는 고등학교 1학년 학생들을 대상으로 학생들이 함숫값의 변화를 인식하는 과정에서 어떠한 변화율 개념을 가지고 있는지 확인하고, 변화율 개념에 따라 어떻게 구간에서 함수의 변화를 인식하고 표현하는지에 대하여 6차시에 걸친 교수실험을 실시하였다. 그 결과 학생들이 함수의 변화를 분석하는데 변화율 개념을 이용되기는 하지만, 학생들의 변화율에 대한 인식과 표현이 다양하고 이에 따라 평균변화율에 대한 인식에 있어서도 차이가 나타나는 것으로 관찰되었다. 다만 이 차이를 질적인 수준차로 보아야할 것인지에 대하여는 추후 연구가 필요할 것으로 보인다. 본 연구는 변화율에 대한 학생의 인식을 세밀하게 조사한 연구로써 향후 변화율 관점에서의 미분학습에 대한 연구에 기초자료가 될 것으로 기대된다.

Keywords

References

  1. 강향임(2012). 수학적 모델링 과정에서 접선 개념의 재구성을 통한미분계수의 재발명과 수학적 개념 변화, 학교수학, 14(4), 409-429.
  2. 김정희, 조완영(2006). 고등학생들의 미적분 개념 이해 및 오류유형 분석. 과학교육연구논총, 22(1), 87-97.
  3. 김채연, 신재홍(2016). 연속적으로 공변하는 두양에 대한 추론의 차이가 문제 해결에 미치는 영향, 수학교육, 55(3), 251-279.
  4. 마민영, 신재홍(2016). 중학생들의 함수의 그래프에 대한 이해와 발달, 학교수학, 18(3), 457-478.
  5. 문종은(2014). 융복합 수업에서 나타난 변화율 개념의 이해에 관한 연구, 이화여자대학교 대학원 박사학위 논문.
  6. 신은주(2006). 등가속도 운동에서 미적분의 기본 아이디어 학습 과정에 관한 사례연구, 수학교육학연구, 16(1), 59-78.
  7. 임재훈, 박교식(2004). 학교 수학에서 접선 개념 교수 방안 연구, 수학교육학연구, 14(2), 171-185.
  8. 이진호(2005). 라이프니츠의 무한과 무한소의 개념과 무한의 연산, 한국수학사학회, 18(3), 67-68.
  9. 이동근, 문민정, 신재홍(2015). 이차함수에서 두 변량사이의 관계 인식 및 표현의 발달 과정 분석: 민선의 경우를 중심으로, 수학교육, 54(4), 299-315.
  10. 이동근, 김숙희, 안상진, 신재홍(2016), 변화율 관점에서 농도 변화에 대한 인식과 표현의 변화 과정에 대한 분석, 수학교육학연구, 26(3). 333-354.
  11. 이동근, 안상진, 김숙희, 신재홍(2016), 거리함수와 속력함수에서, 거리와 속력의 관계에 대한 학생들의 인식과 표현의 변화과정에 대한 연구. 학교수학, 18(4), 881-901.
  12. 정연준, 강현영(2008). 정적분의 무한소 해석에 대한 고찰, 학교수학, 10(3), 375-399.
  13. 정연준, 김재홍(2008). 함수의 연속성 개념의 역사적 발달 과정 분석, 수학교육학연구, 23(4), 567-584.
  14. Boyer, C. (1959). 미분적분학사-그 개념의 발달, 김경화 역, 서울: 교우사.
  15. Byerley, C., Hatfield, N., & Thompson, P. W. (2012). Calculus Student Understandings of division and rate. In S. Brown, S. Larsen, K. Marrongelle & M.. Oehrtman (Eds.), Proceedings of the 15th Annual Conference on Research in Undergraduate Mathematics Education (pp. 358-363). Portland, Oregon: SIGMAA/RUME.
  16. Calson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 5(5), 352-378.
  17. Castillo-Garsow-Garsow, C. C. (2012). Continuous quantitative reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning: Current state of understanding, WISDOMe Monographs (Vol. 2, pp. 55-73). Laramie, WY: University of Wyoming.
  18. Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture-driven research design. In A. E. Kelly & R. A. Lesh(Eds.), Handbook of research design in mathematics and science education (pp. 231-266). Mahwah, NJ: Lawrence Erlbaum Associates
  19. Confrey, J. & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2), 135-164. https://doi.org/10.1007/BF01273661
  20. Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education 26, 66-86. https://doi.org/10.2307/749228
  21. Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationship through quantitative reasoning. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp. 215-238). Springer-Verlag Berlin Heidelberg.
  22. Eves, H. (1982). 수학의 위대한 순간들. 허민, 오혜영 역, 서울: 경문사.
  23. Hauger, G. S. (1995). Rate of change knowledge in high school and college students. p. 49. Washington, D.C. : ERIC Clearinghouse microfiches. ED392598.
  24. Klein, M. (1953). 수학, 문명을 지배하다, 박영훈 역, 서울: 경문사.
  25. Orton, A. (1983). Studentʼs understanding of differentiation. Educational Studies in Mathematics, 14, 235-250. https://doi.org/10.1007/BF00410540
  26. Orton, A. (1984). Understanding rate of change. Mathematics in School, 13(5), 23-26.
  27. Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berenson & W. N. Coulombe (Eds.), Proceedings of the Annual Meeting of the Psychology of Mathematics Education - North America (Vol. 1, pp. 298-304). Raleigh, NC: North Carolina State University. Retrieved from http://bit.ly/1b4sjQE.
  28. Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 179-234). Albany, NY: SUNY Press.
  29. Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundation of mathematics education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education (pp. 45-64) Morelia, Mexico. PME.
  30. Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education, WISDOMe Monographs (Vol. 1, pp. 33-57). Laramie, WY: University of Wyoming
  31. Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics Education, 8, 103-122.