DOI QR코드

DOI QR Code

보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria

  • 김형주 (중원대학교 의생명과학과) ;
  • 윤영걸 (중원대학교 의생명과학과)
  • 투고 : 2016.12.08
  • 심사 : 2017.02.08
  • 발행 : 2017.02.28

초록

GABA는 glutamic acid decarboxylase에 의해서 L-glutamic acid가 탈탄산화되어 생합성된 비단백질 아미노산이다. GABA는 식물에서 스트레스에 대항한 대응반응으로 생성된다. 사람의 중추신경계에서는 주요 억제성 신경전달물질 중 하나로 항고혈압, 항당뇨 효능이 있다고 알려져 있다. 본 연구에서 우리는 보리 잎과 옥수수 수염을 유산균과 함께 발효함으로써 GABA 생성을 증진시키고자 하였다. 보리 잎과 옥수수 수염을 다양한 무게 비율로 조합하여 혼합하였고, $30^{\circ}C$에서 48시간 동안 배양기 안에서 L. plantarium과 함께 발효시켰다. 발효된 혼합물을 열수 추출한 후, thin layer chromatography와 GABase assay를 이용하여 GABA의 생산을 분석하였다. 우리는 9:1 혼합발효추출물이 다른 비율의 추출물 보다 GABA 함량이 높은 것을 확인하였는데 이것은 혼합과 발효기술이 보리 잎과 옥수수 수염 내 GABA 양 증진에 효과가 있음을 의미한다. 또한 몇 가지 생리활성을 분석한 결과 혼합발효추출물의 항산화 효능이 비발효 추출물에 비하여 증진되었고 세포독성은 나타나지 않음을 확인하였다. 이러한 결과는 보리 잎과 옥수수 수염의 조합과 이것을 유산균과 함께 발효시키는 방법이 고함량의 GABA와 증진된 생리 활성을 지닌 기능성 식품으로서의 개발 가능성이 있음을 의미한다.

${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.

키워드

참고문헌

  1. An, E. S. 2003. Chemical properties of corn silk and its bacteriocidal effects on food poisoning bacteria. Chonnam National University Master's thesis.
  2. An, M. K., J. B. Ahn, S. H. Lee, and K. G. Lee. 2010. Analysis of ${\gamma}$-aminobutyric acid (GABA) content in germinated pigmented rice. Korean J. Food Sci. 42: 632-636.
  3. Bae, M. O., H. J. Kim, Y. S. Cha, M. K. Lee, and S. H. Oh. 2009. Effects of kimchi lactic acid bacteria Lactobacillus sp. OPK2-59 with high GABA producing capacity on liver function improvement. J. Korean Soc. Food Sci. Nutr. 38: 1499-1505. https://doi.org/10.3746/jkfn.2009.38.11.1499
  4. Bondet, V., W. Brand-williamas, and C. Berset. 1997. Kinetics and mechanisms of antioxidant activity using the DPPH․ free radical method. Lebensm.-Wiss. u.-Technol. 30: 609-615. https://doi.org/10.1006/fstl.1997.0240
  5. Chang, J. S., B. S. Lee, Y. G. Kim. 1992. Changes in ${\gamma}$-aminobutyric acid (GABA) and the main constituents by a treated conditions and of anaerobically treated green tea leaves. Korean J. Food Sci. Technol. 24: 315-319.
  6. Cho, E. J., C. H. Hwang, and M. O. Yang. 2007. Changes in free amino acids and sensory evaluation of fermented tea (Camellia sinensis var. sinensis) according to the degree of fermentation. J. East Asian Soc. Dietary Life 17: 911-918.
  7. Cho, S. C., D. H. Kim, C. S. Park, J. H. Koh, Y. R. Pyun, and M. C. Kook. 2012. Production of GABA-rich tomato paste by Lactobacillus sp. Fermentation. Korean J. Food Nutr. 25: 26-31. https://doi.org/10.9799/ksfan.2012.25.1.026
  8. De Vuyst, L., and F. Leroy. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13: 194-199. https://doi.org/10.1159/000104752
  9. Di Cagno, R., F. Mazzacane, C. G. Rizzello, M. De Angelis, G. Giuliani, M. Meloni, B. De Servi, and M. Gobbetti. 2010. Synthesis of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 86: 731-741. https://doi.org/10.1007/s00253-009-2370-4
  10. Dung Pham, V., S. Somasundaram, S. H. Lee, S. J. Park, and S. H. Hong. 2016. Efficient production of ${\gamma}$-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J. Ind. Microbiol. Biotechnol. 43: 79-86. https://doi.org/10.1007/s10295-015-1712-8
  11. Hudec, J., L'. Kobida, M. Canigova, M. Lacko-Bartosova, O. Lozek, P. Chlebo, J. Mrazova, L. Ducsay, and J. Bystricka. 2015. Production of ${\gamma}$-aminobutyric acid by microorganisms from different food sources. J. Sci. Food Agric. 95: 1190-1198. https://doi.org/10.1002/jsfa.6807
  12. Jeon, G. U., M. Y. Lee, J. Yoon, S. Jang, M. Jung, H. S. Jeong, and J. Lee. 2010. Effects of heat treatment and selected medicinal plant extracts on GABA content after germination. J. Korean Soc. Food Sci. Nutr. 39: 154-158. https://doi.org/10.3746/jkfn.2010.39.1.154
  13. Kim, D. C., D. W. Kim, S. D. Lee, and M. J. In. 2006. Preparation of barley leaf powder tea and its quality characteristics. J. Korean Soc. Food Sci. Nutr. 35: 734-737. https://doi.org/10.3746/jkfn.2006.35.6.734
  14. Kim, E. A., S. Y. Mann, S. I. Kim, G. Y. Lee, D. Y. Hwang, H. J. Son, C. Y. Lee, and D. S. Kim. 2013. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi. Korean J. Food Preserv. 20: 705-711. https://doi.org/10.11002/kjfp.2013.20.5.705
  15. Kim, K. T., H. M. Seog, S. S. Kim, H. D. Hong, Y. T. Lee, and J. G. Kim. 1995. Chemical composition of barley leaves from different varieties. Agr. Chem. Biotechnol. 38: 431-434.
  16. Kim, S. L., M. J. Kim, Y. Y. Lee, G. H. Jung, B. Y. Son, J. S. Lee, Y. U. Kwon, and Y. I. Park. 2014. Isolation and identification of flavonoids from corn silk. Korean J. Crop Sci. 59: 435-444. https://doi.org/10.7740/kjcs.2014.59.4.435
  17. Kim, S. L., C. H. Park, E. H. Kim, H. S. Hur, and Y. K. Son. 2000. Physicochemical characteristics of corn silk. Korean J. Crop Sci. 45: 392-399.
  18. Ku, K. M., S. K. Kim, and Y. H. Kang. 2009. Antioxidant activity and functional components of corn silk (Zea may L.). Korean J. Plant Res. 22: 323-329.
  19. Lee, G. Y., S. I. Kim, M. G. Jung, J. H. Seong, Y. G. Lee, H. S. Kim, H. S. Chung, B. W. Lee, and D. S. Kim. 2014. Characteristics of chungkookjang that enhance the flavor and GABA content in a mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383. J. Life Sci. 24: 1102-1109. https://doi.org/10.5352/JLS.2014.24.10.1102
  20. Lee, M. G., G. P. Choe, I. H. Lyu, G. Y. Lee, C. Y. Yu, and H. Y. Lee. 2004. Enhanced immune activity and cytotoxicity of Artemisia capillaris Thunb. extracts against human cell lines. Korean J. Medicinal Crop Sci. 12: 36-42.
  21. Lee, S. H. 2015. Development of mulberry-leaf tea containing ${\gamma}$-aminobutyric acid (GABA) by anaerobic treatments. Korean J. Food Sci. Technol. 47: 652-657. https://doi.org/10.9721/KJFST.2015.47.5.652
  22. Min, O. J., B. R. Sharma, C. M. Park, and D. Y. Rhyu. 2011. Effect of Myadis stigma water extract on adipogenesis and blood glucose in 3T3-L1 adipocytes and db/db mice. Korean J. Pharmacogn. 42: 201-208.
  23. Ohn, J. and J. H. Kim. 2012. Intake pattern and needs assessment for the development of web-contents on health functional foods according to age of adults. Korean J. Community Nutr. 17: 26-37. https://doi.org/10.5720/kjcn.2012.17.1.26
  24. Park, H. S., W. K. Kim, H. P. Kim, and Y. G. Yoon. 2015. The efficacy of lowering blood glucose levels using the extracts of fermented bitter melon in the diabetic mice. J. Appl. Biol. Chem. 58: 259-265. https://doi.org/10.3839/jabc.2015.041
  25. Qui, T., H. Li, and Y. Cao. 2010. Pre-staining thin layer chromatography method for amino acid detection. African J. Biotechnol. 9: 8679-7681.
  26. Tsukatani, T., T. Higuchi, and K. Matsumoto. 2005. Enzyme-based microtiter plate assay for ${\gamma}$-aminobutyric acid: Application to the screening of ${\gamma}$-aminobutyric acid-producing lactic acid bacteria. Anal. Chim. Acta 540: 293-297. https://doi.org/10.1016/j.aca.2005.03.056
  27. Yang, H. J., E. H. Kim, J. O. Park, J. E. Kim, and S. N. Park. 2009. Antioxidative activity and component analysis of fermented Melissa officinalis extracts. J. Soc. Cosmet. Scientists Korea 35: 47-55.
  28. Yoo, H. J., S. H. Lee, D. S. Lee, and H. B. Kim. 2002. Antioxidant activity of fermented barley, wormwood, sea tangle, and soybean. Korean J. Microbiol. 38: 230-233.
  29. Zhang, G. and A. W. Bown. 1997. The rapid determination of ${\gamma}$-aminobutyric acid. Phytochem. 44: 1007-1009. https://doi.org/10.1016/S0031-9422(96)00626-7