References
- Fujii T, Okuda T, Yasui N, Wakaizumi M, Ikami T, Ikeda K. 2013. Effects of amla extract and collagen peptide on UVBinduced photoaging in hairless mice. J. Funct. Foods 5: 451-459. https://doi.org/10.1016/j.jff.2012.11.018
- Sun ZW, Hwang E, Lee HJ, Lee TY, Song HG, Park SY, et al. 2015. Effects of Galla chinensis extracts on UVB-irradiated MMP-1 production in hairless mice. J. Nat. Med. 69: 22-34. https://doi.org/10.1007/s11418-014-0856-6
- Wolfle U, Esser PR, Simon-Haarhaus B, Martin SF, Lademann J, Schempp CM. 2011. UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo. Free Radic. Biol. Med. 50: 1081-1093. https://doi.org/10.1016/j.freeradbiomed.2011.01.027
- Naylor EC, Watson RE, Sherratt MJ. 2011. Molecular aspects of skin ageing. Maturitas 69: 249-256. https://doi.org/10.1016/j.maturitas.2011.04.011
- Afaq F, Mukhtar H. 2006. Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp. Dermatol. 15: 678-684. https://doi.org/10.1111/j.1600-0625.2006.00466.x
- Baek B, Lee SH, Kim K, Lim HW, Lim CJ. 2016. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts. Korean J. Physiol. Pharmacol. 20: 269-277. https://doi.org/10.4196/kjpp.2016.20.3.269
- Tallant C, Marrero A, Gomis-Ruth FX. 2010. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim. Biophys. Acta 1803: 20-28. https://doi.org/10.1016/j.bbamcr.2009.04.003
- Davies KJ. 2014. The complex interaction of matrix metalloproteinases in the migration of cancer cells through breast tissue stroma. Int. J. Breast Cancer 2014: 839094.
- Park JE, Pyun HB, Woo SW, Jeong JH, Hwang JK. 2014. The protective effect of Kaempferia parviflora extract on UVBinduced skin photoaging in hairless mice. Photodermatol. Photoimmunol. Photomed. 30: 237-245. https://doi.org/10.1111/phpp.12097
- Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN. 2006. Photoaging: mechanisms and repair. J. Am. Acad. Dermatol. 55: 1-19. https://doi.org/10.1016/j.jaad.2005.05.010
- Poon F, Kang S, Chien AL. 2015. Mechanisms and treatments of photoaging. Photodermatol. Photoimmunol. Photomed. 31: 65-74. https://doi.org/10.1111/phpp.12145
- Hur S, Lee YS, Yoo H, Yang JH, Kim TY. 2010. Homoisoflavanone inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-kappaB nuclear localization. J. Dermatol. Sci. 59: 163-169. https://doi.org/10.1016/j.jdermsci.2010.07.001
- Bai B, Liu Y, You Y, Li Y, Ma L. 2015. Intraperitoneally administered biliverdin protects against UVB-induced skin photo-damage in hairless mice. J. Photochem. Photobiol. B 144: 35-41. https://doi.org/10.1016/j.jphotobiol.2015.02.001
- Kim JY, Lim HJ, Ryu JH. 2008. In vitro anti-inflammatory activity of 3-O-methyl-flavones isolated from Siegesbeckia glabrescens. Bioorg. Med. Chem. Lett. 18: 1511-1514. https://doi.org/10.1016/j.bmcl.2007.12.052
- Jeon CM, Shin IS, Shin NR, Hong JM, Kwon OK, Kim HS, et al. 2014. Siegesbeckia glabrescens attenuates allergic airway inflammation in LPS-stimulated RAW 264.7 cells and OVA induced asthma murine model. Int. Immunopharmacol. 22: 414-419. https://doi.org/10.1016/j.intimp.2014.07.013
- Cho YR, Choi SW, Seo DW. 2013. The in vitro antitumor activity of Siegesbeckia glabrescens against ovarian cancer through suppression of receptor tyrosine kinase expression and the signaling pathways. Oncol. Rep. 30: 221-226. https://doi.org/10.3892/or.2013.2468
- Kim YS, Kim H, Jung E, Kim JH, Hwang W, Kang EJ, et al. 2012. A novel antibacterial compound from Siegesbeckia glabrescens. Molecules 17: 12469-12477. https://doi.org/10.3390/molecules171112469
- Jiang Z, Yu QH, Cheng Y, Guo XJ. 2011. Simultaneous quantification of eight major constituents in Herba Siegesbeckiae by liquid chromatography coupled with electrospray ionization time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 55: 452-457. https://doi.org/10.1016/j.jpba.2011.02.023
- Kim MB, Song Y, Kim C, Hwang JK. 2014. Kirenol inhibits adipogenesis through activation of the Wnt/beta-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 445: 433-438. https://doi.org/10.1016/j.bbrc.2014.02.017
- Lu Y, Xiao J, Wu ZW, Wang ZM, Hu J, Fu HZ, et al. 2012. Kirenol exerts a potent anti-arthritic effect in collagen-induced arthritis by modifying the T cells balance. Phytomedicine 19: 882-889. https://doi.org/10.1016/j.phymed.2012.04.010
- Wang JP, Zhou YM, Ye YJ, Shang XM, Cai YL, Xiong CM, et al. 2011. Topical anti-inflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis. J. Ethnopharmacol. 137: 1089-1094. https://doi.org/10.1016/j.jep.2011.07.016
- Lee KE, Mun S, Pyun HB, Kim MS, Hwang JK. 2012. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts. Biol. Pharm. Bull. 35: 1669-1675. https://doi.org/10.1248/bpb.b12-00037
- Kim M, Park YG, Lee HJ, Lim SJ, Nho CW. 2015. Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NFkappaB and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts. J. Agric. Food Chem. 63: 5428-5438. https://doi.org/10.1021/acs.jafc.5b00467
- Choi HK, Kim DH, Kim JW, Ngadiran S, Sarmidi MR, Park CS. 2010. Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation. J. Biosci. Bioeng. 109: 291-296. https://doi.org/10.1016/j.jbiosc.2009.08.478
- Matsumura Y, Ananthaswamy HN. 2004. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 195: 298-308. https://doi.org/10.1016/j.taap.2003.08.019
- Rezvani HR, Cario-Andre M, Pain C, Ged C, deVerneuil H, Taieb A. 2007. Protection of normal human reconstructed epidermis from UV by catalase overexpression. Cancer Gene Ther. 14: 174-186. https://doi.org/10.1038/sj.cgt.7701000
- Lee HJ, Wu Q, Li H, Bae GU, Kim AK, Ryu JH. 2016. A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells. Oncol. Lett. 12: 2912-2917. https://doi.org/10.3892/ol.2016.4994
- Kim MJ, Woo SW, Kim MS, Park JE, Hwang JK. 2014. Antiphotoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes. J. Asian Nat. Prod. Res. 16: 1139-1147. https://doi.org/10.1080/10286020.2014.983092
Cited by
- N -(4-bromophenethyl) Caffeamide Protects Skin from UVB-Induced Inflammation Through MAPK/IL-6/NF-κB-Dependent Signaling in Human Skin Fibroblasts and Hairless Mouse Skin vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101639
- Effect of Fermented Fish Oil on Fine Particulate Matter-Induced Skin Aging vol.17, pp.1, 2019, https://doi.org/10.3390/md17010061
- Kirenol Inhibits the Function and Inflammation of Fibroblast-like Synoviocytes in Rheumatoid Arthritis in vitro and in vivo vol.10, pp.None, 2017, https://doi.org/10.3389/fimmu.2019.01304
- Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories vol.6, pp.1, 2017, https://doi.org/10.3390/cosmetics6010006
- Horse Oil Mitigates Oxidative Damage to Human HaCaT Keratinocytes Caused by Ultraviolet B Irradiation vol.20, pp.6, 2019, https://doi.org/10.3390/ijms20061490
- Esculetin Prevents the Induction of Matrix Metalloproteinase-1 by Hydrogen Peroxide in Skin Keratinocytes vol.24, pp.2, 2017, https://doi.org/10.15430/jcp.2019.24.2.123
- Protective Effects of Sesamin Against UVB-Induced Skin Inflammation and Photodamage In Vitro and In Vivo vol.9, pp.9, 2019, https://doi.org/10.3390/biom9090479
- Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model vol.23, pp.11, 2017, https://doi.org/10.1111/jcmm.14638
- Standardized Siegesbeckia orientalis L. Extract Increases Exercise Endurance Through Stimulation of Mitochondrial Biogenesis vol.22, pp.11, 2017, https://doi.org/10.1089/jmf.2019.4485
- Anti-inflammatory activities of Sigesbeckia glabrescens Makino: combined in vitro and in silico investigations vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0260-y
- Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy vol.47, pp.1, 2017, https://doi.org/10.1080/21691401.2019.1584110
- Protective Effects of Micronized Fat against Ultraviolet B-Induced Photoaging vol.145, pp.3, 2017, https://doi.org/10.1097/prs.0000000000006607
- Synthesis and preliminary anti-inflammatory activity exploration of novel derivatives of kirenol vol.44, pp.44, 2017, https://doi.org/10.1039/d0nj03783d
- Protective Effects of Kirenol against Lipopolysaccharide-Induced Acute Lung Injury through the Modulation of the Proinflammatory NFκB Pathway and the AMPK2-/Nrf2-Mediated HO-1/AOE Pathway vol.10, pp.2, 2017, https://doi.org/10.3390/antiox10020204
- Antioxidant Compounds, Kirenol and Methyl ent-16α, 17-dihydroxy-kauran-19-oate Bioactivity-Guided Isolated from Siegesbeckia glabrescens Attenuates MITF-Mediated Melanogenesis via Inhibition of vol.26, pp.7, 2017, https://doi.org/10.3390/molecules26071940
- Candida albicans targets that potentially synergize with fluconazole vol.47, pp.3, 2021, https://doi.org/10.1080/1040841x.2021.1884641
- Kirenol: A promising bioactive metabolite from siegesbeckia species: A detailed review vol.281, pp.None, 2021, https://doi.org/10.1016/j.jep.2021.114552