DOI QR코드

DOI QR Code

Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses

  • Silva-Beltran, Norma Patricia (Instituto Tecnologico de Sonora, Departamento de Biotecnologia y Ciencias Alimentarias) ;
  • Chaidez-Quiroz, Cristobal (Universidad de Sonora. Campus Cajeme. Departamento de Ciencias de la Salud, Ejido Providencia) ;
  • Lopez-Cuevas, Osvaldo (Universidad de Sonora. Campus Cajeme. Departamento de Ciencias de la Salud, Ejido Providencia) ;
  • Ruiz-Cruz, Saul (Instituto Tecnologico de Sonora, Departamento de Biotecnologia y Ciencias Alimentarias) ;
  • Lopez-Mata, Marco A. (Universidad de Sonora, Departamento de Investigacion y Posgrado en Alimentos) ;
  • Del-Toro-Sanchez, Carmen Lizette (Centro de Investigacion en Alimentacion y Desarrollo A.C. Unidad Cuauhtemoc) ;
  • Marquez-Rios, Enrique (Centro de Investigacion en Alimentacion y Desarrollo A.C. Unidad Cuauhtemoc) ;
  • Ornelas-Paz, Jose de Jesus (Laboratorio Nacional para la Investigacion en Inocuidad Alimentaria, Centro de Investigacion en Alimentacion y Desarrollo A.C. Unidad Culiacan)
  • Received : 2016.06.07
  • Accepted : 2016.10.26
  • Published : 2017.02.28

Abstract

Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and $3.9log_{10}$, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.

Keywords

References

  1. OECD/Food and Agriculture Organization of the United Nations. 2015. OECD-FAO Agricultural Outlook 2015. OECD Publishing, Paris. Available from http://www.oecd-library.org/docserver/download/5115021e.pdf?expires=1471815440&id=id&accname=guest&checksum=3A504676.
  2. Vlachojannis J, Cameron M, Chrubasik S. 2010. Medicinal use of potato-derived products: a systematic review. Phytother. Res. 24: 159-162.
  3. Yang SA, Paek SH, Kozukue N, Lee KR, Kim J. 2006. ${\alpha}$-Chaconine, a potato glycoalkaloid, induces apoptosis of HT-29 human colon cancer cells through caspase-3 activation and inhibition of ERK 1/2 phosphorylation. Food Chem. Toxicol. 44: 839-846. https://doi.org/10.1016/j.fct.2005.11.007
  4. Jin Z, Shinde P, Yang Y, Choi J, Yoon S, Hahn TW, et al. 2009. Use of refined potato (Solanum tuberosum L. cv. Gogu valley) protein as an alternative to antibiotics in weanling pigs. Livest. Sci. 124: 26-32. https://doi.org/10.1016/j.livsci.2008.12.003
  5. Singh N, Rajini P. 2008. Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chem. Biol. Interact. 173: 97-104. https://doi.org/10.1016/j.cbi.2008.03.008
  6. Albishi T, John JA, Al-Khalifa AS, Shahidi F. 2013. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 5: 590-600. https://doi.org/10.1016/j.jff.2012.11.019
  7. Sotillo DR, Hadley M, Wolf-Hall C. 1998. Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. J. Food Sci. 63: 907-910. https://doi.org/10.1111/j.1365-2621.1998.tb17924.x
  8. Munoz FF, Mendieta JR, Pagano MR, Paggi RA, Daleo GR, Guevara MG. 2010. The swaposin-like domain of potato aspartic protease (Asp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides 31: 777-785. https://doi.org/10.1016/j.peptides.2010.02.001
  9. Hall AJ, Eisenbart VG, Etingüe AL, Gould LH, Lopman BA, Parashar UD. 2012. Epidemiology of foodborne norovirus outbreaks, United States, 2001-2008. Emerg. Infect. Dis. 18: 1566-1573. https://doi.org/10.3201/eid1810.120833
  10. Hornstra L, Smeets P, Medema GJ. 2011. Inactivation of bacteriophage MS2 upon exposure to very low concentrations of chlorine dioxide. Water Res. 45: 1847-1855. https://doi.org/10.1016/j.watres.2010.11.041
  11. Su X, D'Souza DH. 2011. Grape seed extract for control of human enteric viruses. Appl. Environ. Microbiol. 77: 3982-3987. https://doi.org/10.1128/AEM.00193-11
  12. Singleton VL, Rossi JA Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
  13. Chen L, Xin X, Yuan Q, Su D, Liu W. 2013. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 94: 180-188.
  14. Al-Weshahy A, Venket-Rao A. 2009. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 42: 1062-1066. https://doi.org/10.1016/j.foodres.2009.05.011
  15. Lopez-Cobo A, Gomez-Caravaca AM, Cerretani L, Segura-Carretero A, Fernandez-Gutierrez A. 2014. Distribution of phenolic compounds and other polar compounds in the tuber of Solanum tuberosum L. by HPLC-DAD-q-TOF and study of their antioxidant activity. J. Food Compost. Anal. 36: 1-11. https://doi.org/10.1016/j.jfca.2014.04.009
  16. Lopez-Cuevas O, Castro-del-Campo N, Leon-Felix J, Gonzalez-Robles A, Chaidez C. 2011. Characterization of bacteriophages with a lytic effect on various Salmonella serotypes and Escherichia coli O157:H7. Can. J. Microbiol. 57: 1042-1051. https://doi.org/10.1139/w11-099
  17. De-Siqueira R, Dodd C, Rees C. 2006. Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int. J. Food Microbiol. 111: 259-262. https://doi.org/10.1016/j.ijfoodmicro.2006.04.047
  18. Su X, Howell AB, D'Souza DH. 2010. Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates - a time dependence study in vitro. Food Microbiol. 27: 985-991. https://doi.org/10.1016/j.fm.2010.05.027
  19. Su X, Howell AB, D'Souza DH. 2010. The effect of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates. Food Microbiol. 27: 535-540. https://doi.org/10.1016/j.fm.2010.01.001
  20. Alvarez VH, Cahyadi J, Xu D, Saldana MD. 2014. Optimization of phytochemicals production from potato peel using subcritical water: experimental and dynamic modeling. J. Supercrit. Fluids 90: 8-17. https://doi.org/10.1016/j.supflu.2014.02.013
  21. Arun K, Chandran J, Dhanya R, Krishna P, Jayamurthy P, Nisha P. 2015. A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Biosci. 9: 36-46. https://doi.org/10.1016/j.fbio.2014.10.003
  22. Sabeena FK, Grejsen HD, Jacobsen C. 2012. Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): effect on lipid and protein oxidation. Food Chem. 131: 843-851. https://doi.org/10.1016/j.foodchem.2011.09.056
  23. Al-Weshahy A, El-Nokety M, Bakhete M, Venket-Rao A. 2013. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Res. Int. 50: 507-512. https://doi.org/10.1016/j.foodres.2010.12.014
  24. Ieri F, Innocenti M, Andrenelli L, Vecchio V, Mulinacci N. 2011. Rapid HPLC/DAD/MS method to determine phenolic acids, glycoalkaloids and anthocyanins in pigmented potatoes (Solanum tuberosum L.) and correlations with variety and geographical origin. Food Chem. 125: 750-759. https://doi.org/10.1016/j.foodchem.2010.09.009
  25. Cinkilic N, Cetintas SK, Zorlu T, Vatan O, Yilmaz D, Cavas T, et al. 2013. Radioprotection by two phenolic compounds: chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro. Food Chem. Toxicol. 53: 359-363. https://doi.org/10.1016/j.fct.2012.12.008
  26. Naso LG, Valcarcel M, Roura-Ferrer M, Kortazar D, Salado C, Lezama L, et al. 2014. Promising antioxidant and anticancer (human breast cancer) oxidovanadium (IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin. J. Inorg. Biochem. 135: 86-99. https://doi.org/10.1016/j.jinorgbio.2014.02.013
  27. Bhullar KS, Lassalle-Claux G, Touaibia M, Rupasinghe H. 2014. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. Eur. J. Pharmacol. 730: 125-132. https://doi.org/10.1016/j.ejphar.2014.02.038
  28. Guo X, Shen L, Tong Y, Zhang J, Wu G, He Q, et al. 2013. Antitumor activity of caffeic acid 3,4-dihydroxyphenethyl ester and its pharmacokinetic and metabolic properties. Phytomedicine 20: 904-912. https://doi.org/10.1016/j.phymed.2013.04.002
  29. Tseng CC, Li CS. 2005. Collection efficiencies of aerosol samplers for virus-containing aerosols. J. Aerosol Sci. 36: 593-607. https://doi.org/10.1016/j.jaerosci.2004.12.004
  30. Oh M, Bae SY, Chung MS. 2013. Mulberry (Morus alba) seed extract and its polyphenol compounds for control of foodborne viral surrogates. J. Korean Soc. Appl. Biol. Chem. 56: 655-660. https://doi.org/10.1007/s13765-013-3266-7
  31. Silva-Beltran NP, Ruiz-Cruz S, Chaidez C, Ornelas-Paz JJ, Lopez-Mata MA, Marquez-Rios E, Estrada MI. 2015. Chemical constitution and effect of extracts of tomato plants byproducts on the enteric viral surrogates. Int. J. Environ. Health Res. 25: 299-311. https://doi.org/10.1080/09603123.2014.938030
  32. Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, et al. 2009. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 83: 186-190. https://doi.org/10.1016/j.antiviral.2009.05.002
  33. Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, Sajjan US. 2012. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res. 94: 258-271. https://doi.org/10.1016/j.antiviral.2012.03.005
  34. Chavez JH, Leal PC, Yunes RA, Nunes RJ, Barardi CR, Pinto AR, et al. 2006. Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Vet. Microbiol. 116: 53-59. https://doi.org/10.1016/j.vetmic.2006.03.019

Cited by

  1. The Important Role of Potatoes, An Underrated Vegetable Food Crop in Human Health and Nutrition vol.14, pp.1, 2018, https://doi.org/10.2174/1573401314666180906113417
  2. Acrylamide Content of Experimental Flatbreads Prepared from Potato, Quinoa, and Wheat Flours with Added Fruit and Vegetable Peels and Mushroom Powders vol.8, pp.7, 2019, https://doi.org/10.3390/foods8070228
  3. Investigation of different interactions betweenStaphylococcus aureusphages and pomegranate peel, grape seed, and black cumin extracts vol.39, pp.5, 2019, https://doi.org/10.1111/jfs.12679
  4. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis vol.10, pp.6, 2017, https://doi.org/10.3390/biom10060874
  5. The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery vol.8, pp.22, 2020, https://doi.org/10.1021/acssuschemeng.9b07479
  6. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance vol.9, pp.7, 2020, https://doi.org/10.3390/foods9070857
  7. Potato peels as sources of functional compounds for the food industry: A review vol.103, pp.None, 2017, https://doi.org/10.1016/j.tifs.2020.07.015
  8. Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing vol.9, pp.10, 2017, https://doi.org/10.3390/foods9101468
  9. Natural bioactive substances for the control of food-borne viruses and contaminants in food vol.2, pp.1, 2017, https://doi.org/10.1186/s43014-020-00040-y
  10. Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels vol.11, pp.8, 2017, https://doi.org/10.3390/app11083410
  11. Dietary Modulation of Bacteriophages as an Additional Player in Inflammation and Cancer vol.13, pp.9, 2021, https://doi.org/10.3390/cancers13092036
  12. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability vol.121, pp.17, 2017, https://doi.org/10.1021/acs.chemrev.1c00121
  13. Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review vol.10, pp.10, 2017, https://doi.org/10.3390/antiox10101630