DOI QR코드

DOI QR Code

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation

  • Lim, Sora (Department of Life Science, Dongguk University-Seoul) ;
  • Cha, Seho (Department of Life Science, Dongguk University-Seoul) ;
  • Jang, Jun Hyeong (Department of Life Science, Dongguk University-Seoul) ;
  • Yang, Dahye (Department of Life Science, Dongguk University-Seoul) ;
  • Choe, Joonho (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Seo, Taegun (Department of Life Science, Dongguk University-Seoul)
  • Received : 2016.07.13
  • Accepted : 2016.10.25
  • Published : 2017.01.28

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.

Keywords

References

  1. Damania B. 2004. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat. Rev. Microbiol. 2: 656-668. https://doi.org/10.1038/nrmicro958
  2. Means RE, Lang SM, Jung JU. 2007. Human gammaherpesvirus immune evasion strategies, Chapter 31. In Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds.). Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press, Cambridge.
  3. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. 1995. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332: 1186-1191. https://doi.org/10.1056/NEJM199505043321802
  4. Gessain A, Sudaka A, Briere J, Fouchard N, Nicola MA, Rio B, et al. 1996. Kaposi sarcoma-associated herpes-like virus (human herpesvirus type 8) DNA sequences in multicentric Castleman's disease: is there any relevant association in nonhuman immunodeficiency virus-infected patients? Blood 87: 414-416.
  5. Neipel F, Fleckenstein B. 1999. The role of HHV-8 in Kaposi's sarcoma. Semin. Cancer Biol. 9: 151-164. https://doi.org/10.1006/scbi.1999.0129
  6. Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. 2003. Molecular genetics of Kaposi's sarcomaassociated herpesvirus (human herpesvirus 8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 175-212. https://doi.org/10.1128/MMBR.67.2.175-212.2003
  7. Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi's sarcoma and its associated herpesvirus. Nat. Rev. Cancer 10: 707-719. https://doi.org/10.1038/nrc2888
  8. Jenner RG, Alba MM, Boshoff C, Kellam P. 2001. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol. 75: 891-902. https://doi.org/10.1128/JVI.75.2.891-902.2001
  9. Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G. 1999. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol. 73: 2232-2242.
  10. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D. 1996. Lytic growth of Kaposi's sarcomaassociated herpesvirus (human herpesvirus 8) in culture. Nat. Med. 2: 342-346. https://doi.org/10.1038/nm0396-342
  11. Guito J, Lukac DM. 2012. KSHV Rta promoter specification and viral reactivation. Front. Microbiol. 3: 30.
  12. Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G. 1998. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc. Natl. Acad. Sci. USA 95: 10866-10871. https://doi.org/10.1073/pnas.95.18.10866
  13. Ballestas ME, Chatis PA, Kaye KM. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641-644. https://doi.org/10.1126/science.284.5414.641
  14. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. 2003. Chromatin remodeling of the Kaposi's sarcomaassociated herpesvirus ORF50 promoter correlates with reactivation from latency. J. Virol. 77: 11425-11435. https://doi.org/10.1128/JVI.77.21.11425-11435.2003
  15. Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ. 2008. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 371: 139-154. https://doi.org/10.1016/j.virol.2007.09.040
  16. Bernst ein BE, Meissner A, Lander ES. 2007. The mammalian epigenome. Cell 128: 669-681. https://doi.org/10.1016/j.cell.2007.01.033
  17. Berger SL. 2007. The complex language of chromatin regulation during transcription. Nature 447: 407-412. https://doi.org/10.1038/nature05915
  18. Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S. 2008. Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56: 711-721. https://doi.org/10.1369/jhc.2008.951251
  19. ENCODE Project Consortium. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799-816. https://doi.org/10.1038/nature05874
  20. Kouzarides T. 2007. Chromatin modifications and their function. Cell 128: 693-705. https://doi.org/10.1016/j.cell.2007.02.005
  21. Probst AV, Dunleavy E, Almouzni G. 2009. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10: 192-206. https://doi.org/10.1038/nrm2640
  22. Ruthenburg AJ, Li H, Patel DJ, Allis CD. 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8: 983-994. https://doi.org/10.1038/nrm2298
  23. Feinberg AP, Tycko B. 2004. Timeline - The history of cancer epigenetics. Nat. Rev. Cancer 4: 143-153. https://doi.org/10.1038/nrc1279
  24. Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293: 1074-1080. https://doi.org/10.1126/science.1063127
  25. Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, et al. 2007. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17: 691-707. https://doi.org/10.1101/gr.5704207
  26. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39: 311-318. https://doi.org/10.1038/ng1966
  27. Edmunds JW, Mahadevan LC, Clayton AL. 2008. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27: 406-420. https://doi.org/10.1038/sj.emboj.7601967
  28. Mansouri S, Wang S, Frappier L. 2013. A role for the nucleosome assembly proteins TAF-I ${\beta}$ and N AP1 in t he activation of BZLF1 expression and Epstein-Barr virus reactivation. PLoS One 8: e63802. https://doi.org/10.1371/journal.pone.0063802
  29. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, et al. 2008. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28: 2825-2839. https://doi.org/10.1128/MCB.02076-07
  30. Murata T, Kondo Y, Sugimoto A, Kawashima D, Saito S, Isomura H, et al. 2012. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J. Virol. 86: 4752-4761. https://doi.org/10.1128/JVI.06768-11
  31. Nelson JD, Denisenko O, Bomsztyk K. 2006. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1: 179-185. https://doi.org/10.1038/nprot.2006.27
  32. Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A. 2013. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 5: 1901-1923. https://doi.org/10.3390/v5081901
  33. Song MJ, Li X, Brown HJ, Sun R. 2002. Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol. 76: 5000-5013. https://doi.org/10.1128/JVI.76.10.5000-5013.2002
  34. AuCoin DP, Colletti KS, Xu YY, Cei SA, Pari GS. 2002. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J. Virol. 76: 7890-7896. https://doi.org/10.1128/JVI.76.15.7890-7896.2002
  35. Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y. 2003. Kaposi's sarcoma-associated herpesvirus lytic origin (oti-Lyt)-dependent DNA replication: identification of the oti-Lyt and association of K8 bZip protein with the origin. J. Virol. 77: 5578-5588. https://doi.org/10.1128/JVI.77.10.5578-5588.2003
  36. Deng HY, Young A, Sun R. 2000. Auto-activation of the rta gene of human herpesvirus-8 Kaposi's sarcoma-associated herpesvirus. J. Gen. Virol. 81: 3043-3048. https://doi.org/10.1099/0022-1317-81-12-3043
  37. Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, Yuan Y. 2004. Kaposi's sarcoma-associated herpesvirus ori-lyt-dependent DNA replication: cis-acting requirements for replication and ori-lyt-associated RNA transcription. J. Virol. 78: 8615-8629. https://doi.org/10.1128/JVI.78.16.8615-8629.2004
  38. Kawase H, Okuwaki M, Miyaji M, Ohba R, Handa H, Ishimi Y, et al. 1996. NAP-1 is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure. Genes Cells 1: 1045-1056. https://doi.org/10.1046/j.1365-2443.1996.d01-223.x
  39. Shikama N, Chan HM, Krstic-Demonacos M, Smith L, Lee CW, Cairns W, La Thangue NB. 2000. Funct ional interact ion between nucleosome assembly proteins and p300/CREB binding protein family coactivators. Mol. Cell. Biol. 20: 8933-8943. https://doi.org/10.1128/MCB.20.23.8933-8943.2000
  40. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18: 1251-1262. https://doi.org/10.1101/gad.300704