참고문헌
- Ren N, Wang A, Cao G, Xu J, Gao L. 2009. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol. Adv. 27: 1051-1060. https://doi.org/10.1016/j.biotechadv.2009.05.007
- Kircher M. 2015. Sustainability of biofuels and renewable chemicals production from biomass. Curr. Opin. Chem. Biol. 29: 26-31. https://doi.org/10.1016/j.cbpa.2015.07.010
- Tyner WE. 2013. Biofuels and food prices: separating wheat from chaff. Glob. Food Sec. 2: 126-130. https://doi.org/10.1016/j.gfs.2013.05.001
- Balan V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014: 463074.
- McCann MC, Carpita NC. 2015. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot. 66: 4109-4118. https://doi.org/10.1093/jxb/erv267
- Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS. 2015. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29: 49-57. https://doi.org/10.1016/j.cbpa.2015.09.008
- Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. 2016. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16: 1-16. https://doi.org/10.1002/elsc.201400196
- Rennie EA, Scheller HV. 2014. Xylan biosynthesis. Curr. Opin. Biotechnol. 26: 100-107. https://doi.org/10.1016/j.copbio.2013.11.013
-
Numan MT, Bhosle NB. 2006.
${\alpha}$ -L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260. https://doi.org/10.1007/s10295-005-0072-1 - Poutanen K, Tenkanen M, Korte H, Puls J. 1991. Accessory enzymes involved in the hydrolysis of xylans, pp. 426-436. In Leatham GF, Himmel ME (eds.). Enzymes in Biomass Conversion. American Chemical Society, Washington, DC.
- Dutta S, Wu KCW. 2014. Enzymatic breakdown of biomass: Enzyme active sites, immobilization, and biofuel production. Green Chem. 16: 4615-4626. https://doi.org/10.1039/C4GC01405G
- Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, et al. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its appli cation in xylooligosaccharides production. J. Microbiol. Biotechnol. 24: 489-496. https://doi.org/10.4014/jmb.1312.12072
- Lee SH, Lee YE. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 1525-1535. https://doi.org/10.4014/jmb.1407.07077
- Lee SH, Lee YE. 2014. Cloning, expression, and characterization of a thermostable GH51 alpha-L-arabinofuranosidase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 236-244. https://doi.org/10.4014/jmb.1308.08078
- Li F, Xie J, Zhang X, Zhao L. 2015. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis. J. Microbiol. Biotechnol. 25: 11-17. https://doi.org/10.4014/jmb.1402.02055
- Werpy T, Peterson G. 2004. Top Value Added Chemicals From Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge TN, US Department of Energy. Available at http://www.nrel.gov/docs/fy04osti/35523.pdf.
- Chun BW, Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A. 2006. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Appl. Biochem. Biotechnol. 131: 645-658. https://doi.org/10.1385/ABAB:131:1:645
- Zamora F, Bueno M, Molina I, Iribarren JI, Munoz-Guerra S, Galbis JA. 2000. Stereoregular copolyamides derived from D-xylose and L-arabinose. Macromolecules 33: 2030-2038. https://doi.org/10.1021/ma9916436
- Niu W, Molefe MN, Frost JW. 2003. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J. Am. Chem. Soc. 125: 12998-12999. https://doi.org/10.1021/ja036391+
- Sun L, Yang F, Sun H, Zhu T, Li X, Li Y, et al. 2016. Synthetic pathway optimization for improved 1,2,4-butanetriol production. J. Ind. Microbiol. Biotechnol. 43: 67-78. https://doi.org/10.1007/s10295-015-1693-7
- Bayer EA, Belaich J-P, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
- Fontes CM, Gilbert HJ. 2010. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79: 655-681. https://doi.org/10.1146/annurev-biochem-091208-085603
- Raman B, Pan C, Hurst GB, Rodri guez M J r, McKeown CK, Lankford PK, et al. 2009. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4: e5271. https://doi.org/10.1371/journal.pone.0005271
- Borne R, Bayer EA, Pages S, Perret S, Fierobe HP. 2013. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity. FEBS J. 280: 5764-5779. https://doi.org/10.1111/febs.12497
- McClendon SD, Mao Z, Shin HD, Wagschal K, Chen RR. 2012. Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl. Biochem. Biotechnol. 167: 395-411. https://doi.org/10.1007/s12010-012-9680-1
- Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, et al. 2012. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3: e00508-e00512.
- Liang Y, Si T, Ang EL, Zhao H. 2014. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80: 6677-6684. https://doi.org/10.1128/AEM.02070-14
- Ou J, Cao Y. 2014. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33. J. Microbiol. Biotechnol. 24: 1178-1188. https://doi.org/10.4014/jmb.1402.02034
- Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Selfsurface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. USA 109: 13260-13265. https://doi.org/10.1073/pnas.1209856109
- Stern J, Morais S, Lamed R, Bayer EA. 2016. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio 7: e00083-e00016.
- Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. 2016. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8: 299-309. https://doi.org/10.1038/nchem.2459
- Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD. 2009. The rosettazyme: a synthetic cellulosome. J. Biotechnol. 143: 139-144. https://doi.org/10.1016/j.jbiotec.2009.06.019
- Kagawa HK, Yaoi T, Brocchieri L, McMillan RA, Alton T, Trent JD. 2003. The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon. Mol. Microbiol. 48: 143-156. https://doi.org/10.1046/j.1365-2958.2003.03418.x
- McMillan RA, Howard J, Zaluzec NJ, Kagawa HK, Mogul R, Li YF, et al. 2005. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J. Am. Chem. Soc. 127: 2800-2801. https://doi.org/10.1021/ja043827s
- McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD. 2002. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat. Mater. 1: 247-252. https://doi.org/10.1038/nmat775
- Paavola CD, Chan SL, Li Y, Mazzarella KM, McMillan RA, Trent JD. 2006. A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 17: 1171-1176. https://doi.org/10.1088/0957-4484/17/5/001
- Mishra S, Beguin P, Aubert JP. 1991. Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J. Bacteriol. 173: 80-85. https://doi.org/10.1128/jb.173.1.80-85.1991
- Studier FW. 2005. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41: 207-234. https://doi.org/10.1016/j.pep.2005.01.016
- Lee CC, Kibblewhite-Accinelli RE, Smith MR, Wagschal K, Orts WJ, Wong DW. 2008. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Curr. Microbiol. 57: 301-305. https://doi.org/10.1007/s00284-008-9193-x
- Milner Y, Avigad G. 1967. A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydr. Res. 4: 359-361. https://doi.org/10.1016/S0008-6215(00)80191-3
-
Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DW. 2005. Enzyme-coupled assay for
${\beta}$ -xylosidase hydrolysis of natural substrates. Appl. Environ. Microbiol. 71: 5318-5323. https://doi.org/10.1128/AEM.71.9.5318-5323.2005 - Wagschal K, Jordan DB, Lee CC, Younger A, Braker JD, Chan VJ. 2015. Biochemical characterization of uronate dehydrogenases from three pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans. Enzyme Microb. Technol. 69: 62-68. https://doi.org/10.1016/j.enzmictec.2014.12.008
- Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, Wong DW. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116. https://doi.org/10.1007/s00284-005-4583-9
- Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CM, Ferreira LM, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605. https://doi.org/10.1074/jbc.M312278200
-
Lee CC, Kibblewhite RE, Wagschal K, Li R, Orts WJ. 2012. Isolation of
${\alpha}$ -glucuronidase enzyme from a rumen metagenomic library. Protein J. 31: 206-211. https://doi.org/10.1007/s10930-012-9391-z -
Jordan DB. 2008.
${\beta}$ -D-Xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates. Appl. Biochem. Biotechnol. 146: 137-149. https://doi.org/10.1007/s12010-007-8064-4 - Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U. 2007. Genetic analysis of a novel pathway for Dxylose metabolism in Caulobacter crescentus. J. Bacteriol. 189: 2181-2185. https://doi.org/10.1128/JB.01438-06
- Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung WJ. 2012. High yield producti on of D-xylonic acid from Dxylose using engineered Escherichia coli. Bioresour. Technol. 115: 244-248. https://doi.org/10.1016/j.biortech.2011.08.065
- Toivari M, Nygard Y, Kumpula EP, Vehkomaki ML, Bencina M, Valkonen M, et al. 2012. Metabolic engineering of Saccharomyces cerevisiae for bioconversi on of D-xylose to D-xylonate. Metab. Eng. 14: 427-436. https://doi.org/10.1016/j.ymben.2012.03.002
피인용 문헌
- Upgrading of Biomass Monosaccharides by Immobilized Glucose Dehydrogenase and Xylose Dehydrogenase vol.10, pp.22, 2017, https://doi.org/10.1002/cctc.201801335
- Simple and Practical Multigram Synthesis of D-Xylonate Using a Recombinant Xylose Dehydrogenase vol.4, pp.6, 2017, https://doi.org/10.1021/acsomega.9b01090
- Coupled chemistry kinetics demonstrate the utility of functionalized Sup35 amyloid nanofibrils in biocatalytic cascades vol.294, pp.41, 2017, https://doi.org/10.1074/jbc.ra119.008455
- Facilitation of cascade biocatalysis by artificial multi-enzyme complexes - A review vol.28, pp.11, 2017, https://doi.org/10.1016/j.cjche.2020.05.022
- Organizing Multi-Enzyme Systems into Programmable Materials for Biocatalysis vol.11, pp.4, 2017, https://doi.org/10.3390/catal11040409
- Biomimetic Cellulosomes Assembled on Molecular Brush Scaffolds: Random Complexes vs Enzyme Mixtures vol.3, pp.4, 2017, https://doi.org/10.1021/acsapm.0c01407
- Glucan Conversion and Membrane Recovery of Biomimetic Cellulosomes During Lignocellulosic Biomass Hydrolysis vol.193, pp.9, 2017, https://doi.org/10.1007/s12010-021-03569-x