DOI QR코드

DOI QR Code

Sclareol Protects Staphylococcus aureus-Induced Lung Cell Injury via Inhibiting Alpha-Hemolysin Expression

  • Ouyang, Ping (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Sun, Mao (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • He, Xuewen (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Wang, Kaiyu (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Yin, Zhongqiong (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Fu, Hualin (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Li, Yinglun (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Geng, Yi (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Shu, Gang (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • He, Changliang (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Liang, Xiaoxia (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Lai, Weiming (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Li, Lixia (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Zou, Yunfeng (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Song, Xu (College of Veterinary Medicine, Sichuan Agriculture University) ;
  • Yin, Lizi (College of Veterinary Medicine, Sichuan Agriculture University)
  • Received : 2016.06.16
  • Accepted : 2016.09.20
  • Published : 2017.01.28

Abstract

Staphylococcus aureus (S. aureus) is a common gram-positive bacterium that causes serious infections in humans and animals. With the continuous emergence of methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting, and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with A549 epithelial cells, sclareol could protect the A549 cells at a final concentration of $8{\mu}g/ml$. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

Keywords

References

  1. Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
  2. Barber M. 1961. Methicillin-resistant staphylococci. J. Clin. Pathol. 14: 385-393. https://doi.org/10.1136/jcp.14.4.385
  3. Boyle-Vavra S, Daum RS. 2007. Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin. Lab. Invest. 87: 3-9. https://doi.org/10.1038/labinvest.3700501
  4. Nimmo GR. 2012. USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 18: 725-734. https://doi.org/10.1111/j.1469-0691.2012.03822.x
  5. van der Mee-Marquet NL. 2016. Whole-genome sequencing analysis, an essential tool for shedding light on the obscure evolution of Staphylococcus aureus USA300. J. Infect. Dis. 213: 1362-1363. https://doi.org/10.1093/infdis/jiv490
  6. Rossolini GM, Arena F, Pecile P, Pollini S. 2014. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 18: 56-60. https://doi.org/10.1016/j.coph.2014.09.006
  7. Montgomery CP, Boyle-Vavra S , Adem PV, L ee JC, H u sain AN, Clasen J, Daum RS. 2008. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J. Infect. Dis. 198: 561-570. https://doi.org/10.1086/590157
  8. Montgomery CP, Boyle-Vavra S, Daum RS. 2010. Importance of the global regulators Agr and SaeRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One 5: e15177. https://doi.org/10.1371/journal.pone.0015177
  9. Husmann M, Dersch K, Bobkiewicz W, Beckmann E, Veerachato G, Bhakdi S. 2006. Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O. Biochem. Biophys. Res. Commun. 344: 1128-1134. https://doi.org/10.1016/j.bbrc.2006.03.241
  10. Berube BJ, Bubeck Wardenburg J. 2013. Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5: 1140-1166. https://doi.org/10.3390/toxins5061140
  11. Dong J, Qiu J, Wang J, Li H, Dai X, Zhang Y, et al. 2013. Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin. FEMS Microbiol. Lett. 338: 124-131. https://doi.org/10.1111/1574-6968.12040
  12. Qiu J, Luo M, Wang J, Dong J, Li H, Leng B, et al. 2011. Isoalantolactone protects against Staphylococcus aureus pneumonia. FEMS Microbiol. Lett. 324: 147-155. https://doi.org/10.1111/j.1574-6968.2011.02397.x
  13. Qiu J, Xiang H, H u C, Wang Q , Dong J, Li H , et al. 2011. Subinhibitory concentrations of farrerol reduce alpha-toxin expression in Staphylococcus aureus. FEMS Microbiol Lett. 315: 129-133. https://doi.org/10.1111/j.1574-6968.2010.02183.x
  14. Wang D, Yu L, Xiang H, et al. 2008. Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol. Lett. 279: 217-225. https://doi.org/10.1111/j.1574-6968.2007.01031.x
  15. Miski M, Ulubelen A, Johansson C, Mabry TJ. 1983. Antibacterial activity studies of flavonoids from Salvia palaestina. J. Nat. Prod. 46: 874-875. https://doi.org/10.1021/np50030a007
  16. Bhatia S, McGinty D, Letizia C, Api A. 2008. Fragrance material review on sclareol. Food Chem. Toxicol. 46: S270-S274. https://doi.org/10.1016/j.fct.2008.06.074
  17. Dimas K, Kokkinopoulos D, Demetzos C, Vaos B, Marselos M, Malamas M, Tzavaras T. 1999. The effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leukemia Res. 23: 217-234. https://doi.org/10.1016/S0145-2126(98)00134-9
  18. CLSI. 2005. Performance standards for antimicrobial susceptiblity testing; fifteenth informational supplement (ISBN 1-56238-556-9). CLSI Document M100-S15. Clinical Laboratory Standards Institute, Wayne, PA, USA.
  19. Ou yang P , Chen J , Sun M, Y in Z , Lin J, F u H, et al. 2016. Imperatorin inhibits the expression of alpha-hemolysin in Staphylococcus aureus strain BAA-1717 (USA300). Antonie Van Leeuwenhoek 109: 915-922. https://doi.org/10.1007/s10482-016-0690-9
  20. Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A, Fahmi NE, et al. 2007. Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by betacyclodextrin derivatives. Bioorg. Med. Chem. 15: 5424-5431. https://doi.org/10.1016/j.bmc.2007.05.058
  21. Hirst RA, Yesilkaya H, Clitheroe E, Rutman A, Dufty N, Mitchell TJ, et al. 2002. Sensitivities of human monocytes and epithelial cells to pneumolysin are different. Infect. Immun. 70: 1017-1022. https://doi.org/10.1128/IAI.70.2.1017-1022.2002
  22. Bubeck Wardenburg J, Schneewind O. 2008. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205: 287-294. https://doi.org/10.1084/jem.20072208
  23. Liang X, Yan M, Ji Y. 2009. The H35A mutated alpha-toxin interferes with cytotoxicity of staphylococcal alpha-toxin. Infect. Immun. 77: 977-983. https://doi.org/10.1128/IAI.00920-08
  24. Kock R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, et al. 2010. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 15: 19694.
  25. Allen RC, Popat R, Diggle SP, Brown SP. 2014. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12: 300-308. https://doi.org/10.1038/nrmicro3232
  26. Defoirdt T. 2013. Antivirulence therapy for animal production: filling an arsenal with novel weapons for sustainable disease control. PLoS Pathog. 9: e1003603. https://doi.org/10.1371/journal.ppat.1003603
  27. Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9: 117-128. https://doi.org/10.1038/nrd3013
  28. Wang J, Qiu J, Tan W, Zhang Y, Wang H, Zhou X, et al. 2015. Fisetin inhibits Listeria monocytogenes virulence by interfering with the oligomerization of listeriolysin O. J. Infect. Dis. 211: 1376-1387. https://doi.org/10.1093/infdis/jiu520
  29. Li H, Chen Y, Zhang B, Niu X, Song M, Luo Z, et al. 2016. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection. Biochem. Pharmacol. 106: 19-29. https://doi.org/10.1016/j.bcp.2016.01.018
  30. Adhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, Lydecker AD, et al. 2012. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J. Infect. Dis. 206: 915-923. https://doi.org/10.1093/infdis/jis462
  31. Fritz SA, Tiemann KM, Hogan PG, Epplin EK, Rodriguez M, Al-Zubeidi DN, et al. 2013. A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin. Infect. Dis. 56: 1554-1561. https://doi.org/10.1093/cid/cit123
  32. Kolata J, Bode LG, Holtfreter S, Steil L, Kusch H, Holtfreter B, et al. 2011. Distinctive patterns in the human antibody response to Staphylococcus aureus bacteremia in carriers and non-carriers. Proteomics 11: 3914-3927. https://doi.org/10.1002/pmic.201000760
  33. Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O. 2007. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 13: 1405-1406. https://doi.org/10.1038/nm1207-1405
  34. Rau ch S , DeDent AC, K im H K, Bubeck Wardenburg J, Missiakas DM, Schneewind O. 2012. Abscess formation and alpha-hemolysin induced toxicity in a mouse model of Staphylococcus aureus peritoneal infection. Infect. Immun. 80: 3721-3732. https://doi.org/10.1128/IAI.00442-12
  35. Kennedy AD, Bubeck Wardenburg J, Gardner DJ, Long D, Whitney AR, Braughton KR, et al. 2010. Targeting of alphahemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 202: 1050-1058. https://doi.org/10.1086/656043
  36. Novick RP, Ross H, Projan S, Kornblum J, Kreiswirth B, Moghazeh S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12: 3967-3975.
  37. Peng H, Novick R, Kreiswirth B, Kornblum J, Schlievert P. 1988. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170: 4365-4372. https://doi.org/10.1128/jb.170.9.4365-4372.1988
  38. Ohlsen K, Ziebuhr W, Koller K-P, Hell W, Wichelhaus TA, Hacker J. 1998. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 42: 2817-2823.
  39. Worlitzsch D, Kaygin H, Steinhuber A, Dalhoff A, Botzenhart K, Doring G. 2001. Effects of amoxicillin, gentamicin, and moxifloxacin on the hemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob. Agents Chemother. 45: 196-202. https://doi.org/10.1128/AAC.45.1.196-202.2001

Cited by

  1. Erianin against Staphylococcus aureus Infection via Inhibiting Sortase A vol.10, pp.10, 2018, https://doi.org/10.3390/toxins10100385
  2. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA) vol.57, pp.1, 2017, https://doi.org/10.1080/13880209.2019.1674342
  3. Subinhibitory concentrations of Honokiol reduce α-Hemolysin (Hla) secretion by Staphylococcus aureus and the Hla-induced inflammatory response by inactivating the NLRP3 inflammasome vol.8, pp.1, 2019, https://doi.org/10.1080/22221751.2019.1617643
  4. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition vol.9, pp.None, 2019, https://doi.org/10.3389/fcimb.2019.00074
  5. Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics vol.31, pp.None, 2017, https://doi.org/10.1016/j.jare.2021.01.008