DOI QR코드

DOI QR Code

Minimally Invasive Plate Osteosynthesis of Radius-Ulna Fracture using Circular External Fixator in a Dog

  • Kwon, Yong-hwan (College of Veterinary Medicine, Chonbuk National University, Iksan Campus) ;
  • Kang, Jin-su (College of Veterinary Medicine, Chonbuk National University, Iksan Campus) ;
  • Kim, Young-ung (College of Veterinary Medicine, Chonbuk National University, Iksan Campus) ;
  • Cho, Hyoung-sun (College of Veterinary Medicine, Chonbuk National University, Iksan Campus) ;
  • Lee, Ki-chang (College of Veterinary Medicine, Chonbuk National University, Iksan Campus) ;
  • Kim, Nam-soo (College of Veterinary Medicine, Chonbuk National University, Iksan Campus) ;
  • Kim, Min-su (College of Veterinary Medicine, Chonbuk National University, Iksan Campus)
  • 투고 : 2016.10.27
  • 심사 : 2017.02.14
  • 발행 : 2017.02.28

초록

Fracture stabilization techniques continue to evolve and provide approaches that minimize the iatrogenic trauma associated with surgical procedures. Minimally invasive plate osteosynthesis (MIPO) is a recently described method of biological internal fixation performed by introducing a bone plate via small insertional incisions that are remote to the fracture site. Indirect reduction techniques can generally be utilized when performing MIPO. In this case report, we describe MIPO of a radius-ulna fracture by indirect reduction using circular external fixation for alignment and distraction in a dog.

키워드

참고문헌

  1. Brianza SZ, Delise M, Ferraris MM, D'Amelio P, Botti P. Cross-sectional geometrical properties of distal radius and ulna in large, medium and toy breed dogs. J Biomech. 2006; 39: 302-311. https://doi.org/10.1016/j.jbiomech.2004.11.018
  2. Buckley R, Mohanty K, Malish D. Lower limb malrotation following MIPO technique of distal femoral and proximal tibial fractures. Injury. 2011; 42: 194-199. https://doi.org/10.1016/j.injury.2010.08.024
  3. Guiot LP, Dejardin LM. Prospective evaluation of minimally invasive plate osteosynthesis in 36 nonarticular tibial fractures in dogs and cats. Vet Sur. 2011; 40: 171-182. https://doi.org/10.1111/j.1532-950X.2010.00783.x
  4. Hasenboehler E, Rikli D, Babst R. Locking compression plate with minimally invasive plate osteosynthesis in diaphyseal and distal tibial fracture: a retrospective study of 32 patients. Injury. 2007; 38: 365-370. https://doi.org/10.1016/j.injury.2006.10.024
  5. Helfet DL, Haas NP, Schatzker J, Matter P, Moser R, Hanson B. AO phylosophy and principles of fracture managementits evolution and evaluation. J Bone Joint Surg Am. 2003; 85: 1156-1160 https://doi.org/10.2106/00004623-200306000-00029
  6. Hudson C, Pozzi A, Lewis D. Minimally invasive plate osteosynthesis: applications and techniques in dogs and cats. Vet Comp Orthop Traumatol. 2009; 22: 175-182. https://doi.org/10.3415/VCOT-08-06-0050
  7. Johnson A. Current concepts in fracture reduction. Vet Comp Orthop Traumatol. 2003; 16: 59. https://doi.org/10.1055/s-0038-1632761
  8. Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T, Hirohata K. The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg Br. 1990; 72: 822-829.
  9. Morgan SJ, Jeray KJ. Minimally invasive plate osteosynthesis in fractures of the tibia. Oper Tech Orthop. 2001; 11: 195-204. https://doi.org/10.1016/S1048-6666(01)80006-9
  10. Muir P, Manley P. Stabilisation of fractures of the proximal radius and ulna in a dog by application of a single plate to the ulna. Vet Record. 1994; 134: 599-601. https://doi.org/10.1136/vr.134.23.599
  11. O'sullivan M, Chao E, Kelly P. The effects of fixation on fracture-healing. J Bone Joint Surg Am. 1989; 71: 306-310. https://doi.org/10.2106/00004623-198971020-00022
  12. Perren SM. Evolution of the internal fixation of long bone fractures. J Bone Joint Surg Br. 2002; 84: 1093-1110. https://doi.org/10.1302/0301-620X.84B8.13752
  13. Pozzi A, Hudson CC, Gauthier CM, Lewis DD. Retrospective Comparison of Minimally Invasive Plate Osteosynthesis and Open Reduction and Internal Fixation of Radius-Ulna Fractures in Dogs. Vet Surg. 2013; 42: 19-27. https://doi.org/10.1111/j.1532-950X.2012.01009.x
  14. SUMNER-SMITH G. A histological study of fracture nonunion in small dogs. J Small Anim Pract. 1974; 15: 571-578. https://doi.org/10.1111/j.1748-5827.1974.tb06537.x
  15. WELCH JA, BOUDRIEAU RJ, DEJARDIN LM, SPODNICK GJ. The intraosseous blood supply of the canine radius: implications for healing of distal fractures in small dogs. Vet Surg. 1997; 26: 57-61. https://doi.org/10.1111/j.1532-950X.1997.tb01463.x
  16. Xu H, Xue Z, Ding H, Qin H, An Z. Callus Formation and Mineralization after Fracture with Different Fixation Techniques: Minimally Invasive Plate Osteosynthesis versus Open Reduction Internal Fixation. PloS one. 2015; 10: e0140037. https://doi.org/10.1371/journal.pone.0140037