DOI QR코드

DOI QR Code

열처리 온도 및 분위기가 TiH2-WO3 혼합분말의 미세조직에 미치는 영향

Effect of Heat Treatment Temperature and Atmosphere on the Microstructure of TiH2-WO3 Powder Mixtures

  • 이한얼 (서울과학기술대학교 신소재공학과) ;
  • 김연수 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Lee, Han-Eol (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Yeon Su (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2017.01.09
  • 심사 : 2017.01.17
  • 발행 : 2017.02.28

초록

The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled $TiH_2-WO_3$ powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined $TiH_2$ particles are successfully prepared by ball milling for 24h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, $Ti_2O$, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at $600^{\circ}C$ in a hydrogen atmosphere, show $TiH_2$ and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at $900^{\circ}C$ exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of $TiH_2$, the hydrogen reduction of $WO_3$ and the partial oxidation of dehydrogenated Ti.

키워드

참고문헌

  1. R. R. Boyer: Mater. Sci. Eng. A, 213 (1996) 103. https://doi.org/10.1016/0921-5093(96)10233-1
  2. M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Structure and Properties of Titanium and Titanium Alloys, C. Leyens and M. Peters (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003) 1.
  3. M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: Prog. Mater. Sci., 54 (2009) 397. https://doi.org/10.1016/j.pmatsci.2008.06.004
  4. H. Choe, S. M. Abkowitz, S. Abkowitz and D. C. Dunand: J. Alloy. Compd., 390 (2005) 62. https://doi.org/10.1016/j.jallcom.2004.08.021
  5. R. Bhagat, M. Jackson, D. Inman and R. Dashwood: J. Electrochem. Soc., 156 (2009) E1. https://doi.org/10.1149/1.2999340
  6. J. H. Park, D. W. Lee and J. R. Kim: J. Korean Powder Metall. Inst., 17 (2010) 385. https://doi.org/10.4150/KPMI.2010.17.5.385
  7. K. G. Prashanth: Mater. Manuf. Process., 25 (2010) 974. https://doi.org/10.1080/10426911003720870
  8. I. M. Robertson and G.B. Schaffer: Powder Metall., 53 (2010) 12. https://doi.org/10.1179/003258909X12450768327063
  9. J. N. Gwak, S. Yang, J. Y. Yun, J. Y. Kim, S. Park, H. S. Kim, Y. J. Kim and Y. H. Park: J. Korean Powder Metall. Inst., 20 (2013) 467. https://doi.org/10.4150/KPMI.2013.20.6.467
  10. E. Nyberg, M. Miller, K. Simmons and K.S. Weil: Mater. Sci. Eng. C, 25 (2005) 336. https://doi.org/10.1016/j.msec.2005.04.006
  11. D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloy. Compd., 354 (2003) 239. https://doi.org/10.1016/S0925-8388(03)00007-0
  12. A. Rasooli, M. A. Boutorabi, M. Divandari and A. Azarniya: Bull. Mater. Sci., 36 (2013) 301. https://doi.org/10.1007/s12034-013-0455-2
  13. Y. Li, X. M. Chou and L. Yu: Powder Metall., 49 (2006) 236. https://doi.org/10.1179/174329006X95338
  14. V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng. A, 356 (2003) 190. https://doi.org/10.1016/S0921-5093(03)00117-5

피인용 문헌

  1. Fabrication of Porous W-Ti by Freeze-Drying and Hydrogen Reduction of WO3-TiH2 Powder Mixtures vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.472