DOI QR코드

DOI QR Code

A Study on Fire Resistance of Abaca/Vinyl-ester Composites

마닐라 삼/비닐에스터 복합재료의 내화성 연구

  • Lee, Dong-Woo (Department of Mechanical Engineering, Changwon National University) ;
  • Park, Byung-Jin (Department of Mechanical Engineering, Changwon National University) ;
  • Song, Jung-Il (Department of Mechanical Engineering, Changwon National University)
  • Received : 2016.12.12
  • Accepted : 2017.01.21
  • Published : 2017.02.28

Abstract

Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

향상된 특성을 갖는 환경친화적인 복합재료의 개발은 고분자재료의 미래에 있어 필수적이며, 부분적으로 또는 완전히 재생가능한 기지재 또는 보강재에 단지 몇 %의 첨가제를 첨가함으로써 쉽게 제작할 수 있다. 본 연구에서는 마닐라삼 섬유를 보강재로, 비닐에스터를 기지재로 사용하였으며, VARTM 공정을 이용하여 복합재료를 제조하였다. 또한 마닐라삼 섬유의 알칼리표면처리를 수행하고, APP, HNT를 난연제를 첨가함으로써 기계적 물성과 난연 물성을 향상시키고자 하였다. 실험을 통하여 표면처리가 천연섬유의 친수성을 감소시키고 소수성인 기지재와의 계면접착력을 향상시켰으며, 이는 개발된 복합재료의 기계적 물성 향상을 이끌었다. 유사하게, 복합재료의 난연성도 난연제의 함량이 증가함에 따라 크게 향상되는 결과를 얻을 수 있었다.

Keywords

References

  1. Graupner, N., Herrmann, A.S., and Mussig, J., "Natural and Man-Made Cellulose Fibre-Reinforced Poly(lactic acid) (PLA) Composites: An Overview about Mechanical Characteristics and Application Areas," Composites: Part A, Vol. 40, 2009, pp. 810-821. https://doi.org/10.1016/j.compositesa.2009.04.003
  2. Monteiro, S.N., Lopes, F.P.D., Ferreira, A.S., and Nascimento, D.C.O., "Natural-Fiber Polymer-Matrix Composites: Cheaper, Tougher, and Environmentally Friendly," JOM, Vol. 61, No. 1, 2009.
  3. Cheung, H.-Y., Ho, M.-P., Lau, K.-T., Cardona, F., and Hui, D., "Natural Fibre-Reinforced Composites for Bioengineering and Environmental Engineering Applications," Composites: Part B, Vol. 40, 2009, pp. 655-663. https://doi.org/10.1016/j.compositesb.2009.04.014
  4. Mohanty, A.K., Khan, M.A., Sahoo, S., and Hinrichsen, G., "Effect of Chemical Modification on the Performance of Biodegradable Jute Yarn-Biopol (R) Composites," Journal of Materials Science, Vol. 35, No. 10, 2000, pp. 2589-2595. https://doi.org/10.1023/A:1004723330799
  5. Cao, Y., and Wu, Y., "Evaluation of Statistical Strength of Bamboo Fiber and Mechanical Properties of Fiber Reinforced Green Composites," Journal of Central South University of Technology, Vol. 15, 2008, pp. 564-567.
  6. Lee, B.H., Kim, H.J., and Yu, W.R., "Fabrication of Long and Discontinuous Natural Fiber Reinforced Polypropylene Biocomposites and Their Mechanical Properties," Fibers and Polymer, Vol. 10, No. 1, 2009, pp. 83-90. https://doi.org/10.1007/s12221-009-0083-z
  7. Li, X., Tabil, L.G., and Panigrahi, S., "Chemical Treatments of Natural Fiber for Use in Natural Fiber-reinforced Composites: A Review," Journal of Polymers and the Environment, Vol. 15, No. 1, 2007, pp. 25-33. https://doi.org/10.1007/s10924-006-0042-3
  8. Mehta, G., Mohanty, A.K., Thayer, K., Misra, M., and Drzal, L.T., "Novel Biocomposites Sheet Molding Compounds for Low Cost Housing Panel Applications," Journal of Polymers and the Environment, Vol. 13, No. 2, 2005, pp. 169-175. https://doi.org/10.1007/s10924-005-3211-x
  9. Shah, D.U., Porter, D., and Vollrath, F., "Can Silk Become an Effective Reinforcing Fibre? A Property Comparison with Flax and Glass Reinforced Composites," Composites Science and Technology, Vol. 101, 2014, pp. 173-183. https://doi.org/10.1016/j.compscitech.2014.07.015
  10. Boopathi, L., Sampath, P., and Mylsamy, K., "Investigation of Physical, Chemical and Mechanical Properties of Raw and Alkali Treated Borassus Fruit Fiber," Composites Part B: Engineering, Vol. 43, No. 8, 2012, pp. 3044-3052. https://doi.org/10.1016/j.compositesb.2012.05.002
  11. Rawal, A., and Sayeed, M.M.A., "Tailoring the Structure and Properties of Jute Blended Nonwoven Geotextiles via Alkali Treatment of Jute Fibers," Materials & Design, Vol. 53, 2014, pp. 701-705. https://doi.org/10.1016/j.matdes.2013.07.073
  12. Uma Maheswari, C., Obi Reddy, K., Muzenda, E., Guduri, B.R., and Varada Rajulu, A., "Extraction and Characterization of Cellulose Microfibrils from Agricultural Residue - Cocos nucifera L.," Biomass Bioenergy, Vol. 46, 2012, pp. 555-563. https://doi.org/10.1016/j.biombioe.2012.06.039
  13. Kabir, M., Wang, H., Lau, K., and Cardona, F., "Chemical Treatments on Plant-based Natural Fibre Reinforced Polymer Composites: An Overview," Composites Part B: Engineering, Vol. 43, No. 7, 2012, pp. 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053
  14. Xia, Y., Jian, X., Li, J., Wang, X., and Xu, Y., "Synergistic Effect of Montmorillonite and Intumescent Flame Retardant on Flame Retardancy Enhancement of ABS," Polymer-Plastics Technology and Engineering, Vol. 46, 2007, pp. 227-232. https://doi.org/10.1080/03602550601152895
  15. Ismail, H., Pasbakhsh, P., Ahmad Fauzi, M.N., and Abu Bakar, A., "Morphological, Thermal and Tensile Properties of Halloysite Nanotubes Filled Ethylene Propylene Diene Monomer (EPDM) Nanocomposites," Polymer Testing, Vol. 27, 2008, pp. 841-850. https://doi.org/10.1016/j.polymertesting.2008.06.007
  16. Rooj, S., Das, A., Thakur, V., Mahaling, R.N., Bhowmick, A.K., and Heinrich, G., "Preparation and Properties of Natural Nanocomposites Based on Natural Rubber and Naturally Occurring Halloysite Nanotubes," Materials & Design, Vol. 31, 2010, pp. 2151-2156. https://doi.org/10.1016/j.matdes.2009.11.009
  17. Liu, M., Jia, Z., Jia, D., and Zhou, C., "Recent Advance in Research on Halloysite Nanotubes-polymer Nanocomposites," Progress in Polymer Science, Vol. 39, No. 8, 2014, pp. 1498-1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004
  18. Du, M., and Demin Jiab, B.G., "Newly Emerging Applications of Halloysite Nanotubes: A Review," Polymer International, Vol. 59, 2010, pp. 574-582.
  19. Deng, S., Zhang, J., and Ye, L., "Halloysite-epoxy Nanocomposite with Improved Particle Dispersion Through Ball Mill Homogenisation and Chemical Treatments," Composites Science and Technology, Vol. 69, 2009, pp. 2497-2505. https://doi.org/10.1016/j.compscitech.2009.07.001

Cited by

  1. 해초 나노섬유가 황마섬유 강화 복합재료의 기계적 물성에 미치는 영향 vol.31, pp.6, 2017, https://doi.org/10.7234/composres.2018.31.6.398
  2. 기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상 vol.33, pp.4, 2017, https://doi.org/10.7234/composres.2020.33.4.177
  3. 친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구 vol.33, pp.4, 2017, https://doi.org/10.7234/composres.2020.33.4.213