DOI QR코드

DOI QR Code

A Task Offloading Approach using Classification and Particle Swarm Optimization

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

  • Mateo, John Cristopher A. (Dept. of Information and Communication Engineering, Kunsan National University) ;
  • Lee, Jaewan (Dept. of Information and Communication Engineering, Kunsan National University)
  • Received : 2016.05.17
  • Accepted : 2016.10.24
  • Published : 2017.02.28

Abstract

Innovations from current researches on cloud computing such as applying bio-inspired computing techniques have brought new level solutions in offloading mechanisms. With the growing trend of mobile devices, mobile cloud computing can also benefit from applying bio-inspired techniques. Energy-efficient offloading mechanisms on mobile cloud systems are needed to reduce the total energy consumption but previous works did not consider energy consumption in the decision-making of task distribution. This paper proposes the Particle Swarm Optimization (PSO) as an offloading strategy of cloudlet to data centers where each task is represented as a particle during the process. The collected tasks are classified using K-means clustering on the cloudlet before applying PSO in order to minimize the number of particles and to locate the best data center for a specific task, instead of considering all tasks during the PSO process. Simulation results show that the proposed PSO excels in choosing data centers with respect to energy consumption, while it has accumulated a little more processing time compared to the other approaches.

클라우드 컴퓨팅에서 바이오 영감 컴퓨팅 기술과 같은 연구들을 통해, 오프로딩 기법에서 새로운 차원의 솔루션이 개발되고 있다. 모바일 장비 사용의 증가 추세에 따라, 바이오 영감 기술은 모바일 클라우드 컴퓨팅의 발전에 기여하고 있다. 모바일 클라우드 컴퓨팅에서의 에너지효율적인 기법은 총 에너지 소비를 줄이기 위해 필요하지만, 지금까지의 연구는 태스크 분산을 위한 의사결정과정에서 에너지 소비에 관해 고려하지 않고 있다. 본 논문에서는 클라우드렛에서 데이터센터로의 오프로딩 전략으로 Particle Swarm Optimization (PSO) 방법을 제안하며, 이 과정에서 각 태스크는 입자(particle)로 표현된다. 입자의 수를 줄이기 위해 PSO를 적용하기 전에 K-means 클러스터링을 사용하여 수집한 태스크를 클라우드렛 상에서 분류하며, PSO 처리과정 중에는 모든 태스크를 대상으로 하지 않고 분류된 태스크에 따라 최적의 데이터 센터를 찾는다. 시뮬레이션 결과, 제안한 PSO기법이 처리 시간 관점에서는 전통적인 방법에 비해 조금 늦지만, 에너지 관점의 데이터 센터 선택에서는 우수함을 나타내었다.

Keywords

References

  1. Dillon, T., Wu, C., Chang, E., "Cloud computing: issues and challenges", Advanced Information Networking and Applications (AINA), 24th IEEE International Conference, 2010. http://dx.doi.org/10.1109/AINA.2010.187.
  2. Delforge, P., "America's Data Centers Consuming and Wasting Growing Amounts of Energy", Natural Resource Defense Council, August 2014. https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy.
  3. Warkehar, P., Gaikawad, V. T., "Mobile Cloud Computing, Approaches and Issues", International Journal of Emerging Trends & Technology in Computer Science, vol. 2, issue, March - April 2013. http://dx.doi.org/10.1016/j.simpat.2014.05.009.
  4. Satyanarayanan, M., Bahl, P., Caccres, R., Davies, N., "The Case for VM-Based Cloudlets in Mobile Computing", IEEE Pervasive Computing, vol. 8, issue 4, pp. 14-23, 2009. http://dx.doi.org/10.1109/MPRV.2009.82.
  5. Satyanarayanan, M., Bahl, P., Caccres, R., Davies, N., "The Case for VM-Based Cloudlets in Mobile Computing", IEEE Pervasive Computing, vol. 8, issue 4, pp. 14-23, 2009. http://dx.doi.org/10.1109/MPRV.2009.82.
  6. Pandey, S., Wu, L., Guru, S. M., Buyya, R., "A Particle Swarm Optimization-based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments", 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 400-407, 2010. http://doi.ieeecomputersociety.org/10.1109/AINA.2010.31.
  7. Yin, Y., Yu, S., Wang, P., Wang, Y., "A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems", Computer Standards & Interfaces, vol. 28, issue 4, pp. 441-450, 2006. http://dx.doi.org/10.1016/j.csi.2005.03.005.
  8. Baby, A., "Load Balancing in Cloud Computing Environment using PSO Algorithm", International Journal for Research in Applied Science and Engineering Technology, vol. 2, issue 4, April 2014. http://www.ijraset.com/fileserve.php?FID=349.
  9. Awad, A. I., El-Hefnawy, N. A., Abdel-kader, H. M., "Enhanced Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments", International Conference on Communication, Management and Information Technology, vol. 65, pp. 920-929, 2015. http://dx.doi.org/10.1016/j.procs.2015.09.064.
  10. Al-maamari, A., Omara, F. A.," Task Scheduling using PSO Algorithm in Cloud Computing Environments", International Journal of Grid Computing, vol. 8, no. 5, pp. 245-256, 2015. http://www.sersc.org/journals/IJGDC/vol8_no5/24.pdf.
  11. Nirubah, T. J., John, R. R., "Energy-Efficient Task Scheduling Algorithms for Cloud Data Centers", International Journal of Research in Engineering and Technology, vol. 3, issue 3, March 2014. http://esatjournals.net/ijret/2014v03/i03/IJRET20140303 059.pdf.
  12. Gu, L., Zeng, D., Barnawi, A., Guo, S., Stojmenovic, I., "Optimal Task Placement with QoS Constraints in Geo-distributed Data Centers using DVFS", IEEE Transactions on Computers, vol. 64, no. 7, pp. 2049-2059, 2015. http://dx.doi.org/10.1109/TC.2014.2349510.
  13. Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., Heinzelman, W., "Cloud-Vision: Real-time Face Recognition using a Mobile-Cloudlet-Cloud Acceleration Architecture", International Symposium on Computers and Communications, July 2012. http://dx.doi.org/10.1109/ISCC.2012.6249269.
  14. Soyata, T., Muraleedharan, R., Langdon, J., Funai, C., Ames, S., Kwon, M., Heinzelman, W., "COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications", Modeling and Simulation for Defense Systems and Applications vol. 7, 2012. https://www.cs.rit.edu/-jmk/papers/combat-spie.pdf.
  15. Panchal, B., Kapport, R. K., "Dynamic VM Allocation algorithm using Clustering in Cloud Computing", International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, issue 9, 2013. https://www.ijarcsse.com/docs/papers/Volume_3/9_Septe mber2013/V3I9-0119.pdf.
  16. Kordinariya, T. M., Makwana, P. R., "Review on determining number of Cluster in K-means Clustering", International Journal of Advance Research in Computer Science and Management Studies, vol. 1, issue 6, November 2013. http://www.academia.edu/5514429/Review_on_determining_number_of_Cluster_in_K-Means_Clustering.
  17. Standard Performance Evaluation Corporation, http://www.spec.org/