
Journal of Internet Computing and Services(JICS) 2017. Feb: 18(1): 01-09 1

분류와 Particle Swarm Optimization을
이용한 태스크 오프로딩 방법

☆

A Task Offloading Approach using Classification and Particle Swarm
Optimization

존크리스토퍼 마테오1 이 재 완1*

John Cristopher A. Mateo Jaewan Lee

요 약

클라우드 컴퓨팅에서 바이오 영감 컴퓨팅 기술과 같은 연구들을 통해, 오프로딩 기법에서 새로운 차원의 솔루션이 개발되고 있다.

모바일 장비 사용의 증가 추세에 따라, 바이오 영감 기술은 모바일 클라우드 컴퓨팅의 발전에 기여하고 있다. 모바일 클라우드 컴퓨

팅에서의 에너지효율적인 기법은 총 에너지 소비를 줄이기 위해 필요하지만, 지금까지의 연구는 태스크 분산을 위한 의사결정과정에
서 에너지 소비에 관해 고려하지 않고 있다. 본 논문에서는 클라우드렛에서 데이터센터로의 오프로딩 전략으로 Particle Swarm

Optimization (PSO) 방법을 제안하며, 이 과정에서 각 태스크는 입자(particle)로 표현된다. 입자의 수를 줄이기 위해 PSO를 적용하기

전에 K-means 클러스터링을 사용하여 수집한 태스크를 클라우드렛 상에서 분류하며, PSO 처리과정 중에는 모든 태스크를 대상으로
하지 않고 분류된 태스크에 따라 최적의 데이터 센터를 찾는다. 시뮬레이션 결과, 제안한 PSO기법이 처리 시간 관점에서는 전통적인

방법에 비해 조금 늦지만, 에너지 관점의 데이터 센터 선택에서는 우수함을 나타내었다.

☞ 주제어 : 클라우드렛, 분류, Particle Swarm Optimization , 모바일 클라우드 컴퓨팅

ABSTRACT

Innovations from current researches on cloud computing such as applying bio-inspired computing techniques have brought new

level solutions in offloading mechanisms. With the growing trend of mobile devices, mobile cloud computing can also benefit from

applying bio-inspired techniques. Energy-efficient offloading mechanisms on mobile cloud systems are needed to reduce the total

energy consumption but previous works did not consider energy consumption in the decision-making of task distribution. This paper

proposes the Particle Swarm Optimization (PSO) as an offloading strategy of cloudlet to data centers where each task is represented

as a particle during the process. The collected tasks are classified using K-means clustering on the cloudlet before applying PSO in

order to minimize the number of particles and to locate the best data center for a specific task, instead of considering all tasks during

the PSO process. Simulation results show that the proposed PSO excels in choosing data centers with respect to energy consumption,

while it has accumulated a little more processing time compared to the other approaches.

☞ keyword : Cloudlet, Classification, Particle Swarm Optimization, Mobile Cloud Computing

1. INTRODUCTION

Since the introduction of the Cloud computing concept,

various services have been provided to users such as utility

computing, storage services, and applications over the Internet

1 Dept. of Information and Communication Engineering, Kunsan
National University, Jeollabuk-do, 573-701, Korea

* Corresponding author (jwlee@kunsan.ac.kr)
[Received 17 May 2016, Reviewed 04 July 2016, Accepted 24
October 2016]
☆ This paper was supported by research funds of Kunsan National

University.

[1]. Cloud computing offers a broad range of services models,

which are a) Software as a Service, where specific applications

are offered to users, b) Platform as a Service, in which consumers

can develop their own applications on platforms provided by

cloud, c) Infrastructure as a Service, where IT infrastructures

(processing, storage, etc.) are offered by the cloud, users can

choose which of these resources they can use on the fly, thanks to

virtualization. Virtualization strategy on data centers is among

the commonly used since it scales well and handles

heterogeneity of workloads much easier.

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

https://doi.org/10.7472/jksii.2017.18.1.01

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

2 2017. 2

According to the Natural Resource Defense Council [2],

data centers located in America contains more than 12

million computer servers and the energy consumed by these

data centers are enough to power all of the houses in New

York City for two years. If energy-efficient mechanisms were

to be adopted, data centers could save about 40% of their

electrical consumption.

With advancements in technology, Cloud computing

enabled support to mobile devices so that the Mobile Cloud

Computing [3] was created. Because of the limited hardware

resources in mobile devices, even in technological advances,

resource-intensive applications runs very slowly while

draining batteries faster. These types of applications require

much more hardware found in smartphones. In this scenario,

mobile cloud computing covers this problem, in both energy

efficiency and limitation of the hardware, by enabling

methods or threads of the application which required good

resources to be offloaded to cloud servers, therefore reducing

the amount of time for processing and reducing energy

consumed in mobile devices.

Related to mobile cloud computing, Cloudlets [4] was

introduced in mobile cloud computing, in which they are

established between mobile devices and the cloud. Cloudlets

can be in places that are near to the users, where it can

provide services with minimum network latency. Moreover,

the advantages of using cloudlets can are as follows: a) the

cloudlet can do pre and post processing to shorten the

processing time; b) do the whole task; and c) select the data

center appropriate for the task to achieve the efficient

throughput. With the implementation of cloudlets, energy

consumption in mobile devices is reduced, as processes are

offloaded to available resources that are much more powerful

than the mobile devices itself.

Particle Swarm Optimization [5] has been introduced by

Kennedy and Eberhartin in 1995. Particles fly around a

dimensional space in search for a better position, like a

group of birds looking for food. This approach is a collective

intelligence method, which means that in finding solutions, it

considers its own solution (cognitive/personal) and a solution

that is best (global/social) among the others. Both of these

solutions are then used in order to locate a position that is

considered as a proper solution. Each particle would assess

different locations, in each iteration, it would obtain their

personal and global best positions, and move according to

these values. After the stopping criteria have been met, the

particles in the population choose the optimal solution.

With the use of cloudlets in classifying tasks and selecting

which data centers are appropriate for offloading, pre-

processing tasks in the cloudlet lessens the overall workload

in data centers, and selection of data centers for the tasks to

be offloaded makes sure that tasks are offloaded to data

centers that can process them with the least amount of

energy consumed. This paper uses particle swarm

optimization in groups of tasks collected by the cloudlet in

order to find the appropriate data center. Each task is

considered as a particle that searches for a solution around

the dimension space containing different data centers and

will find a data center to which the tasks are then offloaded.

2. RELATED WORKS

2.1 PARTICLE SWARM OPTIMIZATION

ON CLOUD COMPUTING

Particle Swarm Optimization has yielded good results in

the field of cloud computing. It is described as a

self-adaptive search for a globally optimal solution. It is

comparable to other population-based algorithms, like Genetic

algorithms. The optimization depends on both the cognitive and

social behaviors of each particle.

Pandey et al. [6] introduced particle swarm optimization for

workflow scheduling of applications in cloud computing to

minimize the total cost of the resource usage used by applications

found in cloud computing environments. It can also tackle load

distribution of tasks to determine available resources. Both the

computation and transmission costs were included in PSO, in

order to minimize the execution costs of application workflows.

However, energy consumption was not included.

Yin et al. [7] applied Particle swarm in distributed

systems to minimize the system cost and resource usage. A

hybrid version of the optimization is introduced in searching

for a near-optimal task assignment. Its strategy is to examine

each particle’s vector and leave the best one that has the

highest value of the vector. Although an improved version

was introduced, it did not take into account the total energy

consumed of resources.

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

한국 인터넷 정보학회 (18권1호) 3

Baby [8] used PSO algorithm in load balancing of tasks

in virtual machines in a best-fit manner. The study compared

it to a honeybee behavior of load balancing. One advantage

of the particle swarm over the honeybee method is that

particle swarm checks all virtual machines available and

assigns each task to a proper virtual machine, but this

process will take too long in real situations, where a vast

amount of virtual machines has to be checked individually.

Task scheduling in virtual machines is proposed in [9,

10], where Awad et al. [9] applied PSO for task assignment

to virtual machines that resides with hosts. A load balancing

mutation algorithm checks the best solution of the PSO that

handles tasks which failed to be assigned. Also, energy

consumption of the hosts was not included.

Al-maamariet al. [10] proposed a dynamic adaptive

particle swarm optimization (DAPSO) where it improved the

inertia weight in global searches paired with a Cuckoo

Search (CS) algorithm in improving inertia weight in local

searches. It includes minimizing the makespan of tasks as

well as maximizing resource utilization in virtual machines,

although it does not include energy consumption.

2.2 TASK DISTRIBUTION TO CLOUD

RESOURCES

Task scheduling and selecting among data centers are

important issues that have an impact in the response time in

task distribution. Energy consumption of cloud resources is

also considered as a factor that is used to create or improve

the approaches regarding this scope, as energy efficient

mechanisms in data centers are very important in order to

reduce the amount of energy consumed by these resources.

Nirubahet al. [11] proposed an energy-efficient task

scheduling algorithm combining two energy-efficient

schemes, in which each task is evaluated to each available

server. First, each task is categorized into types like reading

file contents, updating data, etc. As the processing time was

calculated, each server assesses the energy consumption of

tasks. It will choose the server that will consume the least

amount of energy with respect to the completion time of the

task.

Gu et al. [12] introduced a task placement scheme to

Geo-distributed data centers. Different operational expenditures

were considered because electricity costs of each data center

vary depending on the location. A Dynamic Voltage

Frequency scaling (DVFS)-aware was proposed which

includes the electricity charge diversities of data centers

while guaranteeing the quality of service. Round trip time

was not considered as one of the restraints with regards to

obtaining a better quality of service.

Soyata et al. [13] designed a mobile-cloudlet-cloud

architecture that minimizes the overall response time of the

application by considering the communication latencies and

computational power of cloud servers at diverse locations

and cloudlets. They developed a face recognition application,

by which face detection is processed on cloudlets, and

recognition process is processed in data centers. Faces found

during detection are distributed among data centers. Overall

response time decreases as the number of cloud server’s

increase and is more effective when cloudlets are present.

Soyata et al. [14] used the same architecture for military

purposes, in which devices, such as cameras that has an

object recognition feature can offload tasks to cloudlets

installed nearby, therefore reducing the amount of time

consumed due to the limited resources in the device. Using

cloudlets accelerates application’s response time, although

additional hardware is needed for installing the cloudlets.

In both studies they used two mechanisms in distributing

tasks to the cloudlet and cloud servers, which are the fixed

and greedy approach. The fixed approach distributes all of

the tasks evenly to all resources, and the Greedy approach

arranges the computing resources based on their last

response time and will give the task to the server which can

complete the task with the least time. Only the response

time was included during the process, not the energy

consumed on cloud servers.

Although [13 & 14] utilized cloudlets in order to reduce

the workload on mobile devices, they did not consider

energy consumption in data centers. In this paper, both the

transmission cost and energy consumption are used as

parameters in deciding which cloud resources they should

use.

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

4 2017. 2

3. PROPOSED APPROACH

3.1 SYSTEM ARCHITECTURE

Figure 1 shows the proposed system which consists of

three components. The a) mobile device component is

composed of mobile devices that are connected to a local

Wi-Fi with an established cloudlet. Mobile devices can

offload tasks to a cloudlet. The b) cloudlet component

provides the mobile users with resources, doing pre and post

processing of tasks. Other tasks which are not assigned or

can’t be executed in the cloudlet because the resources are

not enough can be assigned to the cloud data centers.

Cloudlet acts as the bridge between mobile devices and

cloud resources. The c) cloud data center component,

contains a large pool of resources available for tasks

offloaded from the cloudlets to be executed. This type of

tasks requires a lot of processing power, or it may require

certain data in which the cloudlets lack. The data centers

then return the results back to the cloudlet. The cloudlet can

do post processing to some tasks before it returns finally the

results to the mobile device. The components and their

modules found in Figure 1 are as follows:

(Figure 1) The proposed system architecture

Cloudlet Layer

∙Cloudlet Offloaded Task Handler – this module

collects the tasks offloaded from mobile devices.

∙Workload Profiler –this module classifies the

collected tasks by clustering them according to their

task parameters. Tasks are classified according to the

available cloud services offered, compute-intensive

tasks, memory-intensive tasks are examples.

∙Offloading Decision Handler –this module proceeds

to decide to which data center these tasks are

offloaded. After the tasks are clustered and classified,

each cluster of tasks will undergo the particle swarm

process, where each task would be assigned as a

particle. Once the PSO process has been finished these

clusters of tasks are assigned to the specific data

center.

∙Task Distributor –this module will distribute the tasks

assigned to their respective data centers after the

particle swarm optimization has been applied.

Cloud Layer

∙Cloud Offloaded Task Handler – this module will

accept tasks assigned to it from the cloudlets. It will

store the tasks until it has been assigned to virtual

machines for processing.

∙Host Manager – this module manages each host

found in the data center. It contains the list of virtual

machines and their respective metrics.

∙Virtual Machine (VM) Manager –this module

manages each virtual machine (VM) created.

3.2 WORKLOAD/DATA CENTER

CLUSTERING AND CLASSIFICATION

The system is composed of a cloudlet with a set of tasks

waiting to be offloaded to a set of data centers, each task

differs from requirements (operating system required, the

amount of RAM, and type of operation, etc.) and data centers

with different available resources. Tasks from mobile devices

are collected on the cloudlet, to which they are classified, for

example, tasks with high CPU requirement can be classified

as compute-oriented tasks, while tasks that need to retrieve

data from databases can be classified as database-oriented

tasks. Our goal is to use K-means for clustering and

classifying both tasks and data centers, then matching the

tasks with a specific application type to data centers with

more available resources that corresponds to the application

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

한국 인터넷 정보학회 (18권1호) 5

type, for example, tasks which are compute-intensive requires

more CPU, so they require data centers with a high

availability of the processing resource.

The K-means clustering [15, 16] is used in grouping

similar objects through the means of determining whether the

parameters of said objects are closer to a cluster head or

centroid, by measuring the Euclidean distance of each object

to k-number of clusters. The following are steps in grouping

objects using the K-means:

1. Specify the number of K clusters. For this paper, K is

specified to the number of services the cloud offers.

2. During the first step, the centroids are randomly

chosen among the objects. Afterward, calculation of

centroid values is done by getting the average values

of the point found in the cluster.

3. Calculate non-centroid object’s distance from each

assigned centroid. This can be done by using the

Euclidean distance solver, Equation 1. The object is

then assigned to the centroid closest to it.

 (1)

4. Recalculate the value of centroid for each cluster.

5. Repeat step 3 until all the centroids do not move or

change.

The K-Means clustering uses the parameters found in

tasks, where ti=<Ct, Mt, Bt>, Ct is the requested CPU, Mt

is the memory required and Bt is the bandwidth requested.

 For the parameters used in clustering data centers, let di

= <Cd, Md, Bd>, where Cd is the available CPU, Md is the

available memory and Bd is the available bandwidth. These

will help classify these tasks and match them to data centers

with enough resources.

3.3 PARTICLE SWARM ON DATA

CENTER SELECTION OF TASKS

In Particle Swarm Optimization mechanism, the particles

adjust its movement according to the calculated velocity,

which is influenced by its best position and the position of

the best particle in finding the solution. The performance of

each particle is measured by a fitness value. The fitness

value in this paper is to find a solution with the least energy

consumed in data centers. Equations 2 and 3 provide a way

each particle to move across the dimensional space.

 Vp = Vp + c1 * rand * (pBest – Pos)

 + c2 * rand * (gBest – Pos) (2)

Pos = Pos + Vp (3)

In Equation 2, Vp represents the velocity of the particle.

This value determines the speed and is added to the current

position of the particle. The personal best, pBest, is the

location of the best solution of one particle, whether it is the

current solution or the ones before if the current is not

optimal compared to last solutions it has traveled. After the

gBestis obtained once all of the particles have their personal

best solution, they are ranked according to their fitness

value, and the particle with the highest/lowest value is

chosen, and the location of that solution is considered to be

the gBest.

Pos is the current position of the particle. The rand

generates a random number between 0 and 1, while c1 is the

coefficient of the cognitive component and c2 is the

coefficient of the social component, and both of these values

are usually close to 2. Changing these two values can affect

the velocity of the particle. A higher coefficient in c1 results

to a velocity that follows its own solution, and a higher

coefficient value in c2 will result to following the best

particle in the population. In this case, the values of the

coefficients are equal. After the velocity of the particle has

been determined, it will update its current position, in

Equation 3.

The fitness solution of each data center can be assumed

by two factors, one is the amount of time the task is

processed, which can be calculated by the task’s length

divided by the resource it requires (CPU), and energy

consumed during processing. The fitness value is showed in

Equation 4.

Fv = EnergyDC = TimeTask * PowerDC (4)

PowerDC = Powmin + (Powmax – Powmin) * util (5)

To calculate the power generated by the data center, we

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

6 2017. 2

used Equation 5, where Powmax is the energy consumption at

100%, Powmin is the energy consumption at idle state and util

is the current resource utilization of a data center. Energy

consumed by data centers is the basis of the particle swarm

optimization

The steps in using the Particle Swarm Optimization

algorithm in task offloading are as follows:

1. For each cluster of tasks, initialize the particles on the

dimension space randomly. each task represents a

particle.

2. Proceed to evaluate the fitness value of each particle

to the nearest data center, estimating the amount of

energy consumed using Equation 5. This will be the

particle’s location of the current best solution at

initialization.

3. Compare the fitness value of particle to its previous

best position if another solution is nearby. If the pBest

value is better than the previous pBest, set the current

pBest location as the best personal solution of the

particle.

4. Choose the particle with the best fitness value and

obtain that particle solution location, and it will be the

global best solution, gBest. In this case, the particle

with the least fitness value is chosen to have the gBest

value.

5. Compare the current gBest value to the previous value.

If the current value is better than the previous gBest,

set the current value as the global best value of the

swarm.

6. After obtaining the location of both pBest and gBest,

calculate the particle’s velocity.

7. Update each particles position using the current

velocity of the particle.

8. Check if a stop criterion is met. If it is met, terminate

the process. If not, go back to step 2.

During the process, each cloudlet is represented as a

particle. The particle position depends on 2D values of the

task, which is random during initialization. In each iteration,

each particle will get their personal best by obtaining the

nearest data center and calculating its fitness value. If on the

next iteration, a new data center is assigned to a particle, it

will calculate the new location’s fitness value and compare

to its best personal fitness value, and if it is less, since our

goal here is to obtain the least amount of energy, it will be

assigned the new personal best solution for that particle. In

finding the global best solution, once all of the particles obtain

their personal best solution, one particle with the lowest fitness

value is selected and the solution’s location is considered to

be the global best solution. The processing overhead in

selecting for the particle with the best fitness value depends

on the number of n particles in the process. When both the

personal and global best solution have been found, it will

proceed on calculating the velocity for each particle. Then it

will update its position by adding the velocity to the current

position of the particle.

As soon as the particles start moving from one data center

to another, it will continually check for fitness values of each

data center. The location of the best data center for the whole

iteration is determined as soon as all particles gathered up on

one data center during the nth iteration, checking if each

particle’s nearest data center are the same. It will assign all

of the tasks to the best data center chosen, therefore add data

center j’s current load. If this condition is met, the iteration

will stop, then proceed to another cluster of tasks, if there is

still available.

4. SIMULATION AND EVALUATION

RESULTS

4.1 SIMULATION SETUP

(Table 1) 10 out of 20 Data Center with their properties

The simulation on K-means and Particle Swarm

Optimization was done and implemented using JavaSDK

build 1.7. Task parameters are generated randomly, and these

were clustered and classified according to three types, A)

Computer-intensive tasks, B) Memory-intensive tasks and C)

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

한국 인터넷 정보학회 (18권1호) 7

Database-intensive tasks. The power consumption of data

centers is based on [17]. The following data centers used in

the simulation are found in Table 1. Figure 2 shows a sample

of the simulated data centers with their respective parameters

used in the process. Data centers in the simulation have the

same total resources for CPU, Memory, and Bandwidth.

(Figure-2) Data center creation and addition of

centroids for K-Means process.

4.2 EVALUATION RESULTS

To determine whether using the Particle Swarm

Optimization (PSO) in distributing cluster of tasks matched

to a cluster of data centers is efficient, we included two task

distribution mechanisms, fixed and greedy. Fixed approach

distributes tasks evenly to all data centers, and Greedy selection

prefers data center with the least known processing time. Our

approach (PSO-E) in which particle swarm optimization was

applied is to obtain the least amount of energy consumed by data

centers. Energy consumed by used data centers is the basis for

the performance of each approach.

In calculating for the energy consumption of data centers,

we used Equation 4 as the basis, we assumed that all of the

hosts used in a data center are heterogeneous, each with

energy consumption varying from different utilization levels.

After placing all the tasks on each approach, energy

consumed is calculated and compared to other mechanisms.

Figure 3 shows the total accumulated time used for

processing the tasks in data centers. Fixed approach distributed

each task to data centers, ignoring performance parameters.

 As for Greedy selection, it selects and assigns each task

to data centers that can process tasks with minimum time,

obtaining the least amount of time of the three. PSO-E obtained

the most in terms of total accumulated processing time at 30-50

cloudlets. However, Fixed approach tops all others at 60 tasks,

because distributing equally on all data centers does not yield

optimal results.

(Figure 3) Total accumulated processing time of

tasks in each approach with 20 data

centers.

Figure 4 shows how much energy in watts each approach

had consumed. In here, we can see PSO-E focuses on

finding a solution where energy consumption is minimal,

therefore obtaining the least energy consumed at all number

of tasks. Fixed approach distributes evenly all of the tasks to

all data centers, which leads to using all of them, thus

keeping them underutilized. The greedy approach uses fewer

data center compared to Fixed, but PSO-E utilized the least

amount of data centers and therefore produces the least

amount of energy consumed. Using PSO in task distribution

compared to the Fixed and Greedy approach is much better

because in finding a solution, each particle would include its

own solution and at the same time, the particle which holds

the best solution, therefore, would help in making decisions

as the particles keep moving in finding the optimal solution.

(Figure 4) The total amount of energy consumed

of each approach with 20 data centers

with regards to a number of tasks.

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

8 2017. 2

5. CONCLUSION

Deploying lots of cloudlets is possible in the future,

because of its innovations and improvement in mobile cloud

computing. Particle Swarm Optimization uses a bio-inspired

technique where each particle finds a solution through the

means of both personal best and social best solutions,

allowing them to converge on possible global solutions

which can benefit if not all, most of the particles. The

velocity of each particle is affected by these values. Each

particle evaluates data centers which are nearest to them

according to their energy consumption, obtaining personal

bests solutions. Particles will keep moving until clusters had

obtained their best data centers. Best data centers for each

cluster were obtained when each particle of clusters

converged together in one data center. Simulation results

showed that application of PSO in task distribution resulted

in a less energy consumption of data centers.

In future research on the application of PSO to offloading

of tasks in cloudlets, a dynamic of approach can be applied,

for example putting weights on the particle velocity

calculation. It can choose whether to favor more the personal

or global solution. Also, a trade-off between processing time

and energy consumption can be considered as well. A

dynamic approach can be used where it adjusts whether to

prioritize a data center with least processing time or least

energy consumption.

참 고 문 헌(Reference)

[1] Dillon, T., Wu, C., Chang, E., "Cloud computing: issues

and challenges", Advanced Information Networking and

Applications (AINA), 24th IEEE International

Conference, 2010.

http://dx.doi.org/10.1109/AINA.2010.187.

[2] Delforge, P., "America's Data Centers Consuming and

Wasting Growing Amounts of Energy", Natural Resource

Defense Council, August 2014.

https://www.nrdc.org/resources/americas-data-centers-co

nsuming-and-wasting-growing-amounts-energy.

[3] Warkehar, P., Gaikawad, V. T., "Mobile Cloud

Computing, Approaches and Issues", International Journal

of Emerging Trends & Technology in Computer Science,

vol. 2, issue, March – April 2013.

http://dx.doi.org/10.1016/j.simpat.2014.05.009.

[4] Satyanarayanan, M., Bahl, P., Caccres, R., Davies, N.,

"The Case for VM-Based Cloudlets in Mobile Computing",

IEEE Pervasive Computing, vol. 8, issue 4, pp. 14-23,

2009.

http://dx.doi.org/10.1109/MPRV.2009.82.

[5] Satyanarayanan, M., Bahl, P., Caccres, R., Davies, N.,

"The Case for VM-Based Cloudlets in Mobile

Computing", IEEE Pervasive Computing, vol. 8, issue 4,

pp. 14-23, 2009.

http://dx.doi.org/10.1109/MPRV.2009.82.

[6] Pandey, S., Wu, L., Guru, S. M., Buyya, R., "A Particle

Swarm Optimization-based Heuristic for Scheduling

Workflow Applications in Cloud Computing Environ-

ments", 24th IEEE International Conference on Advanced

Information Networking and Applications, pp. 400-407,

2010.

http://doi.ieeecomputersociety.org/10.1109/AINA.2010.31.

[7] Yin, Y., Yu, S., Wang, P., Wang, Y., "A hybrid particle

swarm optimization algorithm for optimal task assignment

in distributed systems", Computer Standards & Interfaces,

vol. 28, issue 4, pp. 441-450, 2006.

http://dx.doi.org/10.1016/j.csi.2005.03.005.

[8] Baby, A., "Load Balancing in Cloud Computing

Environment using PSO Algorithm", International Journal

for Research in Applied Science and Engineering

Technology, vol. 2, issue 4, April 2014.

http://www.ijraset.com/fileserve.php?FID=349.

[9] Awad, A. I., El-Hefnawy, N. A., Abdel-kader, H. M.,

"Enhanced Particle Swarm Optimization for Task

Scheduling in Cloud Computing Environments",

International Conference on Communication, Management

and Information Technology, vol. 65, pp. 920-929, 2015.

http://dx.doi.org/10.1016/j.procs.2015.09.064.

[10] Al-maamari, A., Omara, F. A.," Task Scheduling using

PSO Algorithm in Cloud Computing Environments",

International Journal of Grid Computing, vol. 8, no. 5, pp.

245-256, 2015.

http://www.sersc.org/journals/IJGDC/vol8_no5/24.pdf.

[11] Nirubah, T. J., John, R. R., "Energy-Efficient Task

Scheduling Algorithms for Cloud Data Centers",

International Journal of Research in Engineering and

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법

한국 인터넷 정보학회 (18권1호) 9

◐ 저 자 소 개 ◑

존크리스토퍼마테오 (John Cristopher A. Mateo)

2015년 West Visayas State University, Philippines

BS in Information Technology

2015년～현재 Kunsan National University, South Korea, Graduate Student in Master’s Course

관심분야 : Cloud computing, mobile cloud computing, intelligent algorithms

이 재 완 (Jaewan Lee)

1984년 중앙대학교 이학사-전자계산학
1987년 중앙대학교 이학석사-전자계산학
1992년 중앙대학교 공학박사-컴퓨터공학
1996년 3월~1998년 1월 한국학술진흥재단 전문위원
1992년~ 현재 군산대학교 교수
관심분야 : 분산 시스템, 운영체제, 유비쿼터스 시스템, 클라우드 컴퓨팅 등

Technology, vol. 3, issue 3, March 2014.

http://esatjournals.net/ijret/2014v03/i03/IJRET20140303

059.pdf.

[12] Gu, L., Zeng, D., Barnawi, A., Guo, S., Stojmenovic, I.,

"Optimal Task Placement with QoS Constraints in

Geo-distributed Data Centers using DVFS", IEEE

Transactions on Computers, vol. 64, no. 7, pp. 2049-2059,

2015.

http://dx.doi.org/10.1109/TC.2014.2349510.

[13] Soyata, T., Muraleedharan, R., Funai, C., Kwon, M.,

Heinzelman, W., "Cloud-Vision: Real-time Face

Recognition using a Mobile-Cloudlet-Cloud Acceleration

Architecture", International Symposium on Computers

and Communications, July 2012.

http://dx.doi.org/10.1109/ISCC.2012.6249269.

[14] Soyata, T., Muraleedharan, R., Langdon, J., Funai, C.,

Ames, S., Kwon, M., Heinzelman, W., "COMBAT:

mobile-Cloud-based cOmpute/coMmunications infrastructure

for BATtlefield applications", Modeling and Simulation

for Defense Systems and Applications vol. 7, 2012.

https://www.cs.rit.edu/~jmk/papers/combat-spie.pdf.

[15] Panchal, B., Kapport, R. K., "Dynamic VM Allocation

algorithm using Clustering in Cloud Computing",

International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 3, issue 9, 2013.

https://www.ijarcsse.com/docs/papers/Volume_3/9_Septe

mber2013/V3I9-0119.pdf.

[16] Kordinariya, T. M., Makwana, P. R., "Review on

determining number of Cluster in K-means Clustering",

International Journal of Advance Research in Computer

Science and Management Studies, vol. 1, issue 6,

November 2013.

http://www.academia.edu/5514429/Review_on_determini

ng_number_of_Cluster_in_K-Means_Clustering.

[17] Standard Performance Evaluation Corporation,

http://www.spec.org/

