DOI QR코드

DOI QR Code

In vitro와 ex vivo 혈관신생 모델에서 황련 냉수추출물의 신생혈관 억제효과

Antiangiogenic Activity of Coptis chinensis Franch. Water Extract in in vitro and ex vivo Angiogenesis Models

  • 김억천 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 김서호 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 이진호 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 김택중 (연세대학교 과학기술대학 생명과학기술학부)
  • Kim, Eok-Cheon (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Kim, Seo Ho (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Lee, Jin-Ho (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Kim, Tack-Joong (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
  • 투고 : 2016.08.05
  • 심사 : 2017.01.16
  • 발행 : 2017.01.30

초록

혈관신생, 즉 새로운 혈관형성은 종양의 성장과 전이에 중요한 역할을 한다고 알려져 있으며, 암 치료에 중요한 목표물이 되고 있다. 이 연구의 목적은 황련 냉수추출물의 혈관신생 억제작용의 효과를 밝히고 항암제로서의 가능성을 평가하고자 한다. Ex vivo rat aortic ring assay 실험결과 신생혈관성장을 억제하는 결과를 확인하였고, 이것을 통해 황련 냉수추출물이 혈관신생과정의 주요한 단계와 내피세포의 증식, 이동, 침투, 혈관내피세포자극인자에 의한 반응으로 모세관 모양의 관 형성작용을 억제함을 알아내었다. 또한 황련 냉수추출물을 처리하였을 때, 세포주기가 억제되고 VEGF에 의한 반응으로 인해 G0/G1 주기에서 S 주기로 가는 과정을 예방하고, VEGF에 의해 활성화가 유도되는 MMP-2, MMP-9이 감소되었다. 따라서 이들의 결과는 황련 냉수추출물이 종양의 발달 단계 중 혈관신생을 방해하는 잠재적인 항암약물의 소재로 고려될 수 있음을 제안한다.

Angiogenesis, the formation of new blood vessels, plays an important role in tumor growth and metastasis; therefore, it has become an important target in cancer therapy. Novel anticancer pharmaceutical products that have relatively few side effects or are non-cytotoxic must be developed, and such products may be obtained from traditional herbal medicines. Coptis chinensis Franch. is an herb used in traditional medicine for the treatment of inflammatory diseases and diabetes. However, potential antiangiogenic effects of C. chinensis water extract (CCFWE) have not yet been studied. The purpose of this study was to determine the antiangiogenic effect of CCFWE in order to evaluate its potential for an anticancer drug. We found that the treatment with CCFWE inhibited the major steps of the angiogenesis process, such as the endothelial cell proliferation, migration, invasion, and capillary-like tube formation in response to vascular endothelial growth factor (VEGF), and also resulted in the growth inhibition of new blood vessels in an ex vivo rat aortic ring assay. We also observed that CCFWE treatment arrested the cell cycle at the G0/G1 phase, preventing the G0/G1 to S phase cell cycle progression in response to VEGF. In addition, the treatment reduced the VEGF-induced activation of matrix metalloproteinases 2 and 9. Taken together, these findings indicate that CCFWE should be considered a potential anticancer therapy against pathological conditions where angiogenesis is stimulated during tumor development.

키워드

참고문헌

  1. Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M. and McEwan, R. N. 1987. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239-3245.
  2. Ali, H. and Dixit, S. 2013. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal 2013, 376216.
  3. Aplin, A. C., Fogel, E., Zorzi, P. and Nicosia, R. F. 2008. The aortic ring model of angiogenesis. Methods Enzymol. 443, 119-136.
  4. Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M. and Stuppner, H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33, 1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  5. Benton, G., Kleinman, H. K., George, J. and Arnaoutova, I. 2011. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int. J. Cancer 128, 1751-1757. https://doi.org/10.1002/ijc.25781
  6. Chrzanowska-Wodnicka, M., Kraus, A. E., Gale, D., White, G. C. 2nd. and Vansluys, J. 2008. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 111, 2647-2656. https://doi.org/10.1182/blood-2007-08-109710
  7. Doyle, J. L. and Haas, T. L. 2009. Differential role of beta-catenin in VEGF and histamine-induced MMP-2 production in microvascular endothelial cells. J. Cell Biochem. 107, 272-283. https://doi.org/10.1002/jcb.22123
  8. Durairajan, S. S., Liu, L. F., Lu, J. H., Chen, L. L., Yuan, Q., Chung, S. K., Huang, L., Li, X. S., Huang, J. D. and Li, M. 2012. Berberine ameliorates ${\beta}$-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol. Aging 33, 2903-2919. https://doi.org/10.1016/j.neurobiolaging.2012.02.016
  9. Eccles, S. A., Court, W., Patterson, L. and Sanderson, S. 2009. In vitro assays for endothelial cell functions related to angiogenesis: proliferation, motility, tubular differentiation, and proteolysis. Methods Mol. Biol. 467, 159-181.
  10. Fan, T. P., Yeh, J. C., Leung, K. W., Yue, P. Y. and Wong, R. N. 2006. Angiogenesis: from plants to blood vessels. Trends Pharmacol. Sci. 27, 297-309. https://doi.org/10.1016/j.tips.2006.04.006
  11. Feng, X., Yan, D., Zhao, K. J., Luo, J. Y., Ren, Y. S., Kong, W. J., Han, Y. M. and Xiao, X. H. 2011. Applications of microcalorimetry in the antibacterial activity evaluation of various Rhizoma Coptidis. Pharm. Biol. 49, 348-353. https://doi.org/10.3109/13880209.2010.523428
  12. Ferrara, N., Gerber, H. P. and LeCouter, J. 2003. The biology of VEGF and its receptors. Nat. Med. 9, 669-676. https://doi.org/10.1038/nm0603-669
  13. Friedemann, T., Otto, B., Klatschke, K., Schumacher, U., Tao, Y., Leung, A. K., Efferth, T. and Schroder, S. 2014. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J. Ethnopharmacol. 155, 607-615. https://doi.org/10.1016/j.jep.2014.06.004
  14. Ge, A. H., Bai, Y., Li, J., Liu, J., He, J., Liu, E. W., Zhang, P., Zhang, B. L., Gao, X. M. and Chang, Y. X. 2014. An activity-integrated strategy involving ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and fraction collector for rapid screening and characterization of the ${\alpha}$-glucosidase inhibitors in Coptis chinensis Franch. (Huanglian). J. Pharm. Biomed. Anal. 100, 79-87. https://doi.org/10.1016/j.jpba.2014.07.025
  15. Gensicka, M., Glowacka, A., Dzierzbicka, K. and Cholewinski, G. 2015. Inhibitors of Angiogenesis in Cancer Therapy - Synthesis and Biological Activity. Curr. Med. Chem. 22, 3830-3847. https://doi.org/10.2174/0929867322666150904111442
  16. Goey, A. K., Chau, C. H., Sissung, T. M., Cook, K. M., Venzon, D. J., Castro, A., Ransom, T. R., Henrich, C. J., McKee, T. C., McMahon, J. B., Grkovic, T., Cadelis, M. M., Copp, B. R., Gustafson, K. R. and Figg, W. D. 2016. Screening and Biological Effects of Marine Pyrroloiminoquinone Alkaloids: Potential Inhibitors of the HIF-$1{\alpha}$/p300 Interaction. J. Nat. Prod. 79, 1267-1275. https://doi.org/10.1021/acs.jnatprod.5b00846
  17. Gordaliza, M. 2007. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 9, 767-776. https://doi.org/10.1007/s12094-007-0138-9
  18. Greenberg, J. I., Shields, D. J., Barillas, S. G., Acevedo, L. M., Murphy, E., Huang, J., Scheppke, L., Stockmann, C., Johnson, R. S., Angle, N. and Cheresh, D. A. 2008. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809-813. https://doi.org/10.1038/nature07424
  19. Hamsa, T. P. and Kuttan, G. 2012. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem. Toxicol. 35, 57-70. https://doi.org/10.3109/01480545.2011.589437
  20. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816. https://doi.org/10.1016/0092-8674(93)90499-G
  21. Hong, Y., Hui, S. C., Chan, T. Y. and Hou, J. Y. 2002. Effect of berberine on regression of pressure-overload induced cardiac hypertrophy in rats. Am. J. Chin. Med. 30, 589-599. https://doi.org/10.1142/S0192415X02000612
  22. Jang, M. H., Kim, H. Y., Kang, K. S., Yokozawa T. and Park, J. H. 2009. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch. Pharm. Res. 32, 341-345. https://doi.org/10.1007/s12272-009-1305-z
  23. Ji, H. F., Li, X. J. and Zhang, H. Y. 2009. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 10, 194-200. https://doi.org/10.1038/embor.2009.12
  24. Jia, F., Zou, G., Fan, J. and Yuan, Z. 2010. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol. 155, 1325-1329. https://doi.org/10.1007/s00705-010-0702-4
  25. Jung, H. A., Yoon, N. Y., Bae, H. J., Min, B. S. and Choi, J. S. 2008. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch. Pharm. Res. 31, 1405-1412. https://doi.org/10.1007/s12272-001-2124-z
  26. Kamath, S., Skeels, M. and Pai, A. 2009. Significant differences in alkaloid content of Coptis chinensis (Huanglian) from its related American species. Chin. Med. 4, 17. https://doi.org/10.1186/1749-8546-4-17
  27. Kingston, D. G. and Newman, D. J. 2007. Taxoids: cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Devel. 10, 130-144.
  28. Kim, S. H., Kim, E. C., Kim, W. J., Lee, M. H., Kim, S. Y. and Kim, T. J. 2015. Coptis japonica Makino extract suppresses angiogenesis through regulation of cell cycle-related protein. Biosci. Biotechnol. Biochem. 80, 1095-1106.
  29. Kong, X., Wan, H., Su, X., Zhang, C., Yang, Y., Li, X., Yao, L. and Lin, N. 2014. Rheum palmatum L. and Coptis chinensis Franch. exert antipyretic effect on yeast-induced pyrexia rats involving regulation of TRPV1 and TRPM8 expression. J. Ethnopharmacol. 153, 160-168. https://doi.org/10.1016/j.jep.2014.02.007
  30. Kwon, O. J., Kim, M. Y., Shin, S. H., Lee, A. R., Lee, J. Y., Seo, B. I., Shin, M, R., Choi, H. G., Kim, J. A., Min, B. S., Kim, G. N., Noh, J. S., Rhee, M. H. and Roh, S. S. 2016. Antioxidant and anti-inflammatory effects of Rhei Rhizoma and Coptidis Rhizoma mixture on reflux esophagitis in rats. Evid. Based Complement. Alternat. Med. 2016, 2052180.
  31. Lal, B. K., Varma, S., Pappas, P. J., Hobson, R. W. 2nd. and Duran, W. N. 2001. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc. Res. 62, 252-262. https://doi.org/10.1006/mvre.2001.2338
  32. Lee, B., Kim, K. H., Jung, H. J. and Kwon, H. J. 2012. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Biochem. Biophys. Res. Commun. 421, 76-80. https://doi.org/10.1016/j.bbrc.2012.03.114
  33. Lee, S. H., Lee, J., Jung, M. H. and Lee, Y. M. 2013. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. Mol. Nutr. Food Res. 57, 225-234. https://doi.org/10.1002/mnfr.201200489
  34. Liu, L. H. and Chen, Z. L. 2012. Analysis of four alkaloids of Coptis chinensis in rat plasma by high performance liquid chromatography with electrochemical detection. Anal. Chim. Acta 737, 99-104. https://doi.org/10.1016/j.aca.2012.05.054
  35. Liu, R., Cao, Z., Pan, Y., Zhang, G., Yang, P., Guo, P. and Zhou, Q. 2013. Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells. Anticancer Drugs 24, 667-676. https://doi.org/10.1097/CAD.0b013e328361ab28
  36. Lu, J., Zhang, K., Nam, S., Anderson, R. A., Jove, R. and Wen, W. 2010. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis 31, 481-488. https://doi.org/10.1093/carcin/bgp292
  37. Luo, Y., Zhao, H., Liu, Z., Ju, D., He, X., Xiao, C., Zhong, G., Chen, S., Yang, D., Chan, A. S. and Lu, A. 2010. Comparison of the enteric mucosal immunomodulatory activity of combinations of Coptis chinensis Franch. Rhizomes and Evodia rutaecarpa (Juss.) Benth. Fruits in mice with dextran sulphate sodium-induced ulcerative colitis. Planta Med. 76, 766-772. https://doi.org/10.1055/s-0029-1240701
  38. Majeti, B. K., Lee, J. H., Simmons, B. H. and Shojaei, F. 2013. VEGF is an important mediator of tumor angiogenesis in malignant lesions in a genetically engineered mouse model of lung adenocarcinoma. BMC Cancer 13, 213. https://doi.org/10.1186/1471-2407-13-213
  39. Mikstacka, R., Stefanski, T. and Rozanski, J. 2013. Tubulininteractive stilbene derivatives as anticancer agents. Cell Mol. Biol. Lett. 18, 368-397.
  40. Morgan, D. O. 1995. Principles of CDK regulation. Nature 374, 131-134. https://doi.org/10.1038/374131a0
  41. Nagase, H. and Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494. https://doi.org/10.1074/jbc.274.31.21491
  42. Oberlies, N. H. and Kroll, D. J. 2004. Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod. 67, 129-135. https://doi.org/10.1021/np030498t
  43. Park, E. K., Rhee, H. I., Jung, H. S., Ju, S. M., Lee, Y. A., Lee, S. H., Hong, S. J., Yang, H. I., Yoo, M. C. and Kim, K. S. 2007. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Phytother. Res. 21, 746-750. https://doi.org/10.1002/ptr.2156
  44. Puyraimond, A., Weitzman, J. B., Babiole, E. and Menashi, S. 1999. Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. J. Cell. Sci. 112, 1283-1290.
  45. Ram, V. J. and Kumari, S. 2001. Natural products of plant origin as anticancer agents. Drug News Perspect. 4, 465-482.
  46. Scott, L. J. 2007. Bevacizumab: in first-line treatment of metastatic breast cancer. Drugs 67, 1793-1799. https://doi.org/10.2165/00003495-200767120-00009
  47. Staton, C. A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J. and Lewis, C. E. 2004. Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 85, 233-248. https://doi.org/10.1111/j.0959-9673.2004.00396.x
  48. Wang, X. N., Xu, L. N., Peng, J. Y., Liu, K. X., Zhang, L. H. and Zhang, Y. K. 2009. In vivo inhibition of S180 tumors by the synergistic effect of the Chinese medicinal herbs Coptis chinensis and Evodia rutaecarpa. Planta Med. 75, 1215-1220. https://doi.org/10.1055/s-0029-1185538
  49. West, D. C. and Burbridge, M. F. 2009. Three-dimensional in vitro angiogenesis in the rat aortic ring model. Methods Mol. Biol. 467, 189-210.
  50. Wu, M., Wang, J. and Liu, L. T. 2010. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin. J. Integr. Med. 16, 188-192. https://doi.org/10.1007/s11655-010-0188-7
  51. Wu, X., Yang, T., Liu, X., Guo, J. N., Xie, T., Ding, Y., Lin, M. and Yang, H. 2015. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer. Tumour Biol. 37, 5493-5501.
  52. Xu, W., Towers, A. D., Li, P. and Collet, J. P. 2006. Traditional Chinese medicine in cancer care: perspectives and experiences of patients and professionals in China. Eur. J. Cancer Care 15, 397-403. https://doi.org/10.1111/j.1365-2354.2006.00685.x
  53. Yan, D., Jin, C., Xiao, X. H. and Dong, X. P. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70, 845-849. https://doi.org/10.1016/j.jbbm.2007.07.009
  54. Yan, D., Li, J., Xiong, Y., Zhang, C., Luo, J., Han, Y., Wang, R., Jin, C., Qian, H., Li, J., Qiu, L., Peng, C., Lin, Y., Song, X. and Xiao, X. 2014. Promotion of quality standard of herbal medicine by constituent removing and adding. Sci. Rep. 4, 3668.
  55. Yang, T. C., Chao, H. F., Shi, L. S., Chang, T. C., Lin, H. C. and Chang, W. L. 2014. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia 93, 239-244. https://doi.org/10.1016/j.fitote.2014.01.008
  56. Yip, N. K. and Ho, W. S. 2013. Berberine induces apoptosis via the mitochondrial pathway in liver cancer cells. Oncol. Rep. 30, 1107-1112. https://doi.org/10.3892/or.2013.2543
  57. Yu, D., Fu, S., Cao, Z., Bao, M., Zhang, G., Pan, Y., Liu, W. and Zhou, Q. 2014. Unraveling the novel anti-osteosarcoma function of coptisine and its mechanisms. Toxicol. Lett. 226, 328-336. https://doi.org/10.1016/j.toxlet.2014.02.021
  58. Yu, H. H., Kim, K. J., Cha, J. D., Kim, H. K., Lee, Y. E., Choi, N. Y. and You, Y. O. 2005. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 8, 454-461. https://doi.org/10.1089/jmf.2005.8.454
  59. Zhang, J., Yang, J. Q., He, B. C., Zhou, Q. X., Yu, H. R., Tang, Y. and Liu, B. Z. 2009. Berberine and total base from Rhizoma Coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med. J. 30, 760-766.
  60. Zhang, Q., Piao, X. L., Piao, X. S., Lu, T., Wang, D. and Kim, S. W. 2011. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem. Toxicol. 49, 61-69. https://doi.org/10.1016/j.fct.2010.09.032
  61. Zhao, J., Jiang, P. and Zhang, W. D. 2009. Molecular networks for the study of TCM pharmacology. Brief. Bioinform. 11, 417-430.
  62. Zhou, H., Jiang, T., Wang, Z., Ren, S., Zhao, X., Wu, W., Jiang, L., Liu, Z. and Teng, L. 2014. Screening for potential ${\alpha}$-glucosidase inhibitors in Coptis chinensis Franch extract using ultrafiltration LC-ESI-MS. Pak. J. Pharm. Sci. 27, 2007-2012.