DOI QR코드

DOI QR Code

The physicochemical characteristics and antioxidant capacities of commercial tea products from Phellinus baumii, Ganoderma lucidum

상황버섯과 영지버섯 차류 제품의 이화학적 특성 및 항산화능

  • Kim, Ha-Na (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Son, Eun Ji (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Chung, Shin-Kyo (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2015.02.02
  • Accepted : 2015.04.10
  • Published : 2017.02.28

Abstract

This study was conducted to investigate the physicochemical characteristics, antioxidant capacities of Phellinus linteus and Ganoderma lucidum commercial tea products. The physicochemical characteristics included pH, Hunter's color values, soluble solid contents, evaporation residues, and ${\beta}$-glucan contents. The antioxidant capacities were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities, ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, total phenolic contents (TPC), and total flavonoid contents (TFC). The pH, soluble solid contents, evaporation residues, and ${\beta}$-glucan contents were in the range of 4.43-7.05, $0.40-0.73^{\circ}Brix$, 62.04-258.84 mg/100 g, and 15.51-62.32 mg%, respectively. Hunter's color values (L, a, and b) indicated 41.76-55.02, -0.49-5.06, and 17.41-28.32, respectively. The antioxidant capacities showed $32.63-367.81{\mu}M$ GAE (DPPH radical scavenging activities), $321.86-1,035.19{\mu}M$ TE (FRAP), $703.50-1,091.83{\mu}M$ (ABTS radical scavenging activities), $286.56-916.00{\mu}M$ (TPC), and $85.33-635.33{\mu}M$ (TFC). Overall, P. linteus liquid tea 2 (PL2) and G. lucidum liquid tea 1 (GL1) showed high antioxidant capacities (p<0.05). The TPC and TFC were highly correlated with DPPH radical scavenging activities, FRAP, and ABTS radical scavenging activities (r=0.7298-0.9743), but the ${\beta}$-glucan contents were not correlated well with antioxidant activities tested (r=0.3146-0.6663).

시판되고 있는 상황버섯과 영지버섯 차류 제품의 이화학적 특성과 ${\beta}$-glucan 함량, 항산화 활성 및 항산화 성분 함량을 조사하고 이들 간의 상관성을 분석하였다. pH는 4.43-7.05의 범위를 보였으며, 상황버섯 액상차2(PL2)와 영지버섯 액상차1(GL1)이 가장 낮은 값을 보였다(p<0.05). Hunter 색차계로 측정한 결과 L 값은 41.76-55.02, a 및 b 값은 -0.49-5.06, 17.41-28.32의 범위를 보였다. 가용성 고형분 함량은 $0.40-0.73^{\circ}Brix$의 범위를 보였으며, 증발잔류물은 62.04-258.84 mg/100 g의 범위로 PL2와 GL1이 가장 높은 값을 나타내었다(p<0.05). ${\beta}$-Glucan 함량은 15.51-62.32 mg%의 범위를 나타내었으며, GL1과 PL2가 각각 62.32 mg%, 42.35 mg%로 높은 함량을 나타내었다(p<0.05). DPPH 라디칼 소거 활성에서는 $32.63-367.81{\mu}M$ GAE, FRAP에서는 $321.86-1,035.19{\mu}M$ TE, ABTS 라디칼 소거활성에서는 $703.50-1,091.83{\mu}M$ TE의 범위를 나타내었으며, 총페놀 함량은 $286.56-916.00{\mu}M$ GAE, 총플라보노이드 함량은 $85.33-635.33{\mu}M$ CE의 범위를 보여 전반적으로 PL2와 GL1이 항산화능이 높은 것으로 나타났다(p<0.05). 총페놀 함량과 총플라보노이드 함량은 DPPH 라디칼 소거 활성, FRAP 및 ABTS 라디칼 소거 활성과 모두 높은 상관성(r=0.7298-0.9743)을 보인 반면, ${\beta}$-glucan 함량은 항산화 활성 모두와 비교적 낮은 상관성(r=0.3146-0.6663)을 보였다. 전반적으로 액상차가 침출차에 비해 ${\beta}$-glucan 함량 및 항산화능이 우수하였다.

Keywords

References

  1. Hong SS, Jung EK, Kim AJ (2013) Quality characteristics of Yanggaeng supplemented with Sanghwang mushroom (Phellinus linteus) mycelia. J Korean Diet Assoc, 19, 253-264 https://doi.org/10.14373/JKDA.2013.19.3.253
  2. Cha JY, Jin JS, Cho YS (2011) Biological activity of methanolic extract from Ganoderma lucidum, Momordica charantia, Fagopyrum tataricum, and their mixtures. J Life Sci, 21, 1016-1024 https://doi.org/10.5352/JLS.2011.21.7.1016
  3. Lee KS, Kong SK, Choi SY (2003) The protective effects of Ganoderma lucidum on the DNA damage and mutagenesis. J App Pharmacology, 11, 139-144
  4. Kim SH, Cha EJ, Hwang YJ (2004) Studies on antitumor activity and antimicrobial activity of Coriolus Versicolor (Fr.) Quel and Ganoderma Lucidum (Fr.) Karst. Korean J Human Ecology, 7, 49-58
  5. Kim JO, Jung MJ, Choi HJ, Lee JT, Lim AK, Hong JH, Kim DI (2008) Antioxidative and biological activity of hot water and ethanol extracts from Phellinus liteus. J Korean Soc Food Sci Nutr, 37, 684-690 https://doi.org/10.3746/jkfn.2008.37.6.684
  6. Oh SI, Lee MS (2005) Antioxidative and antimutagenic effects of Ganoderma lucidum Krast extracts. Korean J Food Nutr, 18, 54-62
  7. Lee BE, Ryu SY, Kim EH, Kim YH, Kwak KA, Song HY (2012) Immunostimulating effect of mycelium extract of Phellinus linteus. Korean J Pharmacogn, 43, 157-162
  8. Choi MA (2009) Effects of Cheonggukjang added Phellinus linteus myceria on lipid metalbolism in adult female rats. J Life Sci, 19, 1679-1683 https://doi.org/10.5352/JLS.2009.19.11.1679
  9. Choi HY, Ha KS, Jo SH, Ka EH, Chang HB, Kwon YI (2012) Antioxidant and anti-hyperglycemic effects of a Sanghwang mushroom (Phellinus linteusau) water extract. Korean J Food Nutr, 25, 239-245 https://doi.org/10.9799/ksfan.2012.25.2.239
  10. Bae HK, Hwang IW, Hong HD, Chung SK (2015) Antioxidant capacities and ${\beta}$-glucan content of ethanol extract from Phellinus baumii. Korean J Food Preserv, 22, 721-726 https://doi.org/10.11002/kjfp.2015.22.5.721
  11. Kim HM, Lee DH (2012) Effect of beta-glucans extracted from Phellinus baumii on the growth of Caenorhabditis elegans. Korean J Mycology, 40, 54-59 https://doi.org/10.4489/KJM.2012.40.1.054
  12. AOAC (1990) Official Methods of Analysis. 15th ed, Association of Official Analytical Chemists, Washington DC, USA
  13. Olson EJ, Standing JE, Griego-Harper N, Hoffman OA, Limper AH (1996) Fungal ${\beta}$-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun, 64, 3548-3554
  14. Blois MS (1958) Antioxidants determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  15. Benzie IFF, Strain JJ (1996) The Ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power" : the FRAP assay. Anal Biochem, 239, 70-76 https://doi.org/10.1006/abio.1996.0292
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol, 299, 152-178
  18. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64, 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  19. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS (2010) Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr, 39, 1087-1096 https://doi.org/10.3746/jkfn.2010.39.8.1087
  20. Cho JH, Lee JY, Lee MJ, Oh HN, Kang DH, Jhune CS (2013) Comparative analysis of useful ${\beta}$-glucan and polyphenol in the fruiting bodies of Ganoderma spp.. J Mushroom Sci Prod, 11, 164-170 https://doi.org/10.14480/JM.2013.11.3.164
  21. Kim MH, Jeong EJ, Kim YS (2016) Studies on the antioxidative activities and active components of the extracts from Pleurotus ostreatus. J Food Hyg Saf, 31, 119-125 https://doi.org/10.13103/JFHS.2016.31.2.119
  22. Kim JH, Jeong CH, Choi GN, Kwak JH, Choi SG, Heo HJ (2009) Antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis using an in vitro system. Korean J Food Sci Technol, 41, 712-716
  23. Choi YM, Kim MH, Shin JJ, Park JM, Lee JS (2003) The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr, 32, 723-727 https://doi.org/10.3746/jkfn.2003.32.5.723
  24. Kim JY, Seong GU, Hwang IW, Chung SK (2015) Correlation between antioxidant capacities and color values in Korean red grape juices. J Korean Soc Food Sci Nutr, 44, 1206-1211 https://doi.org/10.3746/jkfn.2015.44.8.1206
  25. Lee SO, Kim MJ, Kim DG, Choi HJ (2005) Antioxidative activities of temperature-stepwise water extracts from Inonotus obliquus. J Korean Soc Food Sci Nutr, 34, 139-147 https://doi.org/10.3746/jkfn.2005.34.2.139

Cited by

  1. 버섯차 개발을 위한 로스팅 식용버섯류와 곡물첨가물의 혼합비율에 따른 추출온도 및 시간별 생리활성 및 영양성분 변화 vol.18, pp.4, 2017, https://doi.org/10.14480/jm.2020.18.4.344