DOI QR코드

DOI QR Code

Effects of temperature and solution composition on evaporation of iodine as a part of estimating volatility of iodine under gamma irradiation

  • Yeon, Jei-Won (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Jung, Sang-Hyuk (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2016.11.13
  • Accepted : 2017.07.21
  • Published : 2017.12.25

Abstract

As a part of evaluating the volatility of iodide ions subjected to gamma irradiation, $I_2$ evaporation experiments were performed with $I_2$ and $I^-$ mixed solutions in the temperature range $26-80^{\circ}C$ in an open, well-ventilated space. The evaporation of $I_2$ was observed to follow primarily first order kinetics, depending on the $I_2$ concentration. The evaporation rate constant increased rapidly with increase in temperature. The presence of $I^-$ slightly reduced the evaporation rate of $I_2$ by forming relatively stable $I_3^-$. The effect of $Cl^-$ at <1.0 wt% on $I_2$ evaporation was insignificant. The evaporation rate constants of $I_2$ were $1.3{\times}10^{-3}min^{-1}\;cm^{-2}$, $2.4{\times}10^{-2}min^{-1}\;cm^{-2}$, and $8.6{\times}10^{-2}min^{-1}\;cm^{-2}$, at $26^{\circ}C$, $50^{\circ}C$, and $80^{\circ}C$, respectively.

Keywords

References

  1. J. Ishida, N. Miyagawa, H. Watanabe, T. Asano, Y. Kitahara, Environmental radioactivity around Tokai-works after reactor accident at Chernobyl, J. Environ. Radioact. 7 (1988) 17-27. https://doi.org/10.1016/0265-931X(88)90039-2
  2. K. Hirose, 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactivity deposition monitoring results, J. Environ. Radioact. 111 (2012) 13-17. https://doi.org/10.1016/j.jenvrad.2011.09.003
  3. N. Momoshima, S. Sugihara, R. Ichikawa, H. Yokoyama, Atmospheric radionuclides transported to Fukuoka, Japan remote from the Fukushima Dai-ichi nuclear power complex following the nuclear accident, J. Environ. Radioact. 111 (2012) 28-32. https://doi.org/10.1016/j.jenvrad.2011.09.001
  4. C.-C. Lin, Chemical effects of gamma radiation on iodine in aqueous solutions, J. Inorg. Nucl. Chem. 42 (1980) 1101-1107. https://doi.org/10.1016/0022-1902(80)80417-9
  5. K. Ishigure, H. Shiraishi, H. Okuda, N. Fujita, Effect of radiation on chemical forms of iodine species in relation to nuclear reactor accidents, Radiat. Phys. Chem. 28 (1986) 601-610.
  6. K. Ishigure, H. Shiraishi, H. Okuda, Radiation chemistry of aqueous iodine systems under nuclear reactor accident conditions, Radiat. Phys. Chem. 32 (1988) 593-597.
  7. J.C. Wren, J. Paquette, S. Sunder, B.L. Ford, Iodine chemistry in the +1 oxidation state. II. A Raman and UV-visible spectroscopic study of the disproportionation of hypoiodite in basic solutions, Can. J. Chem. 64 (1986) 2284-2296. https://doi.org/10.1139/v86-375
  8. M. Lucas, Radiolysis of cesium iodide solutions in conditions prevailing in a pressurized water reactor severe accident, Nucl. Technol. 82 (1988) 157-161. https://doi.org/10.13182/NT82-157
  9. E.C. Beahm, C.F. Weber, T.S. Kress, G.W. Parker, Iodine Chemical Forms in LWR Severe Accidents, NUREG/CR-5732, ORNL/TM-11861, US-NRC, ORNL, Oak Ridge (TN), 1992.
  10. M.E. Berzal, M.J.M. Crespo, M.S. Kowaiczyk, M.M. Espigares, J.L. Jimenez, State-of-the-art Review on Fission Products Aerosol Pool Scrubbing under Severe Accident Conditions, EUR 16241 EN, Nuclear Science and Technology, EC, 1995.
  11. C.B. Ashmore, J.R. Gwyther, H.E. Sims, Some effects of pH on inorganic iodine volatility in containment, Nucl. Eng. Des. 166 (1996) 347-355. https://doi.org/10.1016/S0029-5493(96)01252-6
  12. J.C. Wren, J.M. Ball, G.A. Glowa, The chemistry of iodine in containment, Nucl. Technol. 129 (2000) 297-325. https://doi.org/10.13182/NT129-297
  13. F. Taghipour, G.J. Evans, Radiolytic organic iodide formation under nuclear reactor accident conditions, Environ. Sci. Technol. 34 (2000) 3012-3017. https://doi.org/10.1021/es990507d
  14. L. Cantrel, Radiochemistry of iodine outcomes of the caiman program, Nucl. Technol. 156 (2006) 11-28. https://doi.org/10.13182/NT156-11
  15. N. Girault, S. Dickinson, F. Funke, A. Auvinen, L. Herranz, E. Krausmann, Iodine behaviour under LWR accident conditions: lessons learnt from analyses of the first two Phebus FP tests, Nucl. Eng. Des. 236 (2006) 1293-1308. https://doi.org/10.1016/j.nucengdes.2005.12.002
  16. B. Clement, L. Cantrel, G. Ducros, F. Funke, L. Herranz, A. Rydl, G. Weber, C. Wren, State of the Art Report on Iodine Chemistry, NEA/CSNI/R(2007)1, OECD-NEA, Paris, 2007.
  17. G.V. Buxton, Q.G. Mulazzani, On the hydrolysis of iodine in alkaline solution: a radiation chemical study, Radiat. Phys. Chem. 76 (2007) 932-940. https://doi.org/10.1016/j.radphyschem.2006.06.009
  18. L. Bosland, F. Funke, N. Girault, G. Langrock, PARIS project: radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident. Part 1. Formation and destruction of air radiolysis productseExperimental results and modeling, Nucl. Eng. Des. 238 (2008) 3542-3550. https://doi.org/10.1016/j.nucengdes.2008.06.023
  19. L.E. Herranz, B. Clement, In-containment source term: key insights gained from a comparison between the PHEBUS-FP programme and the US-NRC NUREG-1465 revised source term, Prog. Nucl. Energy 52 (2010) 481-486. https://doi.org/10.1016/j.pnucene.2009.11.003
  20. S. Dickinson, F. Andreo, T. Karkela, J. Ball, L. Bosland, L. Cantrel, F. Funke, N. Girault, J. Holm, S. Guilbert, L.E. Herranz, C. Housiadas, G. Ducros, C. Mun, J.-C. Sabroux, G. Weber, Recent advances on containment iodine chemistry, Prog. Nucl. Energy 52 (2010) 128-135. https://doi.org/10.1016/j.pnucene.2009.09.009
  21. H.-C. Kim, Y.-H. Cho, Raim - a model for iodine behavior in containment under severe accident condition, Nucl. Eng. Technol. 47 (2015) 827-837. https://doi.org/10.1016/j.net.2015.06.016
  22. S.-H. Jung, J.-W. Yeon, S.Y. Hong, Y. Kang, K. Song, The oxidation behavior of iodide ion under gamma irradiation conditions, Nucl. Sci. Eng. 181 (2015) 191-203. https://doi.org/10.13182/NSE14-87
  23. S.Y. Hong, S.-H. Jung, J.-W. Yeon, Effect of aluminum metal surface on oxidation of iodide under gamma irradiation conditions, J. Radioanal. Nucl. Chem. 308 (2016) 459-468. https://doi.org/10.1007/s10967-015-4503-9
  24. C.F. Weber, E.C. Beahm, T.S. Kress, Models of Iodine Behavior in Reactor Containments, ORNL/TM-12202, Oak Ridge National Laboratory, Oak Ridge (TN), 1992.
  25. M.J. Polissar, The rate of evaporation of chlorine, bromine, and iodine from aqueous solutions, J. Chem. Educ. 12 (1935) 89-92. https://doi.org/10.1021/ed012p89
  26. I. Lengyel, I.R. Epstein, K. Kustin, Kinetics of iodine hydrolysis, Inorg. Chem. 32 (1993) 5880-5882. https://doi.org/10.1021/ic00077a036
  27. D.D. Macdonald, A.C. Scott, P. Wentrcek, Silver-silver chloride thermocells and thermal liquid junction potentials for potassium chloride solutions at elevated temperatures, J. Electrochem. Soc. 126 (1979) 1618-1624. https://doi.org/10.1149/1.2129342
  28. S.-H. Jung, J.-W. Yeon, Y. Kang, K. Song, Determination of triiodide ion concentration using UV-visible spectrophotometry, Asian J. Chem. 26 (2014) 4084-4086.
  29. D.A. Palmer, R.W. Ramette, R.E. Mesmer, Triiodide ion formation equilibrium and activity coefficients in aqueous solution, J. Solution Chem. 13 (1984) 673-683. https://doi.org/10.1007/BF00650374
  30. G.P. Baxter, C.H. Hickey, W.C. Holmes, The vapor pressure of iodine, J. Am. Chem. Soc. 29 (1907) 127-136. https://doi.org/10.1021/ja01956a004
  31. S.E. Jorgensen, Studies in Environmental Science 5: Industrial Waste Water Management, Elsevier Scientific Publishing Company, Amsterdam, Netherlands, 1979.
  32. F.E. Jones, Evaporation of Water: with Emphasis on Applications and Measurements, Lewis Publishers, Chelsea (MI), USA, 1992.
  33. C.L. Harman, The Solubility of Iodine in Aqueous Salt Solutions, Master's Thesis in Chemistry, Georgia School of Technology, 1932.

Cited by

  1. Volatility of radioactive iodine under gamma irradiation: effects of H2O2 and NaOH on the decomposition rate of volatile molecular iodine dissolved in aqueous solutions vol.316, pp.3, 2017, https://doi.org/10.1007/s10967-018-5862-9
  2. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry vol.249, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2020.126079
  3. Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream vol.12, pp.6, 2017, https://doi.org/10.3390/atmos12060702