DOI QR코드

DOI QR Code

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Received : 2017.06.13
  • Accepted : 2017.08.16
  • Published : 2017.12.25

Abstract

The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

Keywords

References

  1. D.M. Christopher, B. Wang, Prandtl number effects for Marangoni convection over a flat surface, Int. J. Therm. Sci. 40 (2001) 564-570. https://doi.org/10.1016/S1290-0729(01)01244-3
  2. L. Zheng, X. Zhang, Y. Gao, Analytical solution for Marangoni convection over a liquidevapor surface due to an imposed temperature gradient, Math. Comput. Model 48 (2008) 1787-1795. https://doi.org/10.1016/j.mcm.2008.04.003
  3. A. Al-Mudhaf, A.J. Chamkha, Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects, Heat Mass Transf 42 (2005) 112-121. https://doi.org/10.1007/s00231-004-0611-8
  4. B.S. Dandapat, B. Santra, H.I. Andersson, Thermocapillarity in a liquid film on an unsteady stretching surface, Int. J. Heat Mass Transf 46 (2003) 3009-3015. https://doi.org/10.1016/S0017-9310(03)00078-4
  5. B.S. Dandapat, B. Santra, K. Vajravelu, The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet, Int. J. Heat Mass Transf 50 (2007) 991-996. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.007
  6. N.F.M. Noor, I. Hashim, Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface, Int. J. Heat Mass Transf 53 (2010) 2044-2051. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.052
  7. N.M. Arifin, R. Nazar, I. Pop, Similarity solution of Marangoni convection boundary layer flow over a flat surface in a nanofluid, J. Appl. Math 634746 (2013) 8.
  8. D.R.V.S.R.K. Sastry, A.S.N. Murti, T.P. Kantha, The effect of heat transfer on MHD Marangoni boundary layer flow past a flat plate in nanofluid, Int. J. Eng. Math 581507 (2013) 6.
  9. Y. Lin, L. Zheng, X. Zhang, Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity, Int. J. Heat Mass Transfer 77 (2014) 708-716. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.028
  10. R.F. Engberg, M. Wegener, E.Y. Kenig, The impact of Marangoni convection on fluid dynamics and mass transfer at deformable single rising dropletseA numerical study, Chem. Eng. Sci. 116 (2014) 208-222. https://doi.org/10.1016/j.ces.2014.04.023
  11. Y. Lin, L. Zheng, X. Zhang, MHD, Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model, Mechanics of Time-Dependent Materials 19 (2015) 519-536. https://doi.org/10.1007/s11043-015-9276-6
  12. C. Jiao, L. Zheng, Y. Lin, L. Ma, G. Chen, Marangoni abnormal convection heat transfer of power-law fluid driven by temperature gradient in porous medium with heat generation, Int. J. Heat Mass Transf 92 (2016) 700-707. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.017
  13. Y. Lin, B. Li, L. Zheng, G. Chen, Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature, Powder Technol 301 (2016) 379-386. https://doi.org/10.1016/j.powtec.2016.06.029
  14. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, T. Yasmeen, Impact of Marangoni convection in the flow of carbonewater nanofluid with thermal radiation, Int. J. Heat Mass Transf 106 (2017) 810-815. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.115
  15. T. Hayat, U. Shaheen, A. Shafiq, A. Alsaedi, S. Asghar, Marangoni mixed convection flow with Joule heating and nonlinear radiation, AIP Adv 5 (2015) 077140. https://doi.org/10.1063/1.4927209
  16. M. Sheikholeslami, A.J. Chamkha, Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection, J. Mol Liq 225 (2017) 750-757. https://doi.org/10.1016/j.molliq.2016.11.001
  17. M. Sheikholeslami, D.D. Ganji, Influence of magnetic field on CuO-H2O nanofluid flow considering Marangoni boundary layer, Int. J. Hydrogen Energy 42 (2017) 2748-2755. https://doi.org/10.1016/j.ijhydene.2016.09.121
  18. M. Sheikholeslami, D.D. Ganji, Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM, Indian J. Phys 41 (2017) 1-7. INIS.
  19. J. Buongiorno, L.W. Hu, Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report (No. DOE/ID/14765-8), Massachusetts Institute of Technology Cambridge, 2009. MA 02139-4307.
  20. S.M. Mousavizadeh, G.R. Ansarifar, M. Talebi, Assessment of the TiO 2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling, Nucl. Eng. Technol 47 (2015) 814-826. https://doi.org/10.1016/j.net.2015.07.001
  21. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, B.C. Prasannakumara, P. Venkatesh, Numerical investigation on boundary layer flow of a nanofluid towards an inclined plate with convective boundary: Boungiorno nanofluid model, J. Nanofluids 5 (2016) 911-919. https://doi.org/10.1166/jon.2016.1277
  22. M. Sheikholeslami, Magnetic source impact on nanofluid heat transfer using CVFEM, Neural Comput. Appl (2016) 1-10.
  23. B. Mahanthesh, B.J. Gireesha, R.S. Gorla, Mixed convection squeezing threedimensional flow in a rotating channel filled with nanofluid, Int. J. Numer. Method Heat Fluid Flow 26 (2016) 1460-1485. https://doi.org/10.1108/HFF-03-2015-0087
  24. M. Sheikholeslami, Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method, J. Mol. Liq 234 (2017) 364-374. https://doi.org/10.1016/j.molliq.2017.03.104
  25. M. Sheikholeslami, Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method, J. Mol. Liq 231 (2017) 555-565. https://doi.org/10.1016/j.molliq.2017.02.020
  26. M. Sheikholeslami, CuO-water nanofluid free convection in a porous cavity considering Darcy law, Eur Phys J. Plus 132 (2017) 55. https://doi.org/10.1140/epjp/i2017-11330-3
  27. M. Sheikholeslami, Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder, J. Mol. Liq 229 (2017) 137-147. https://doi.org/10.1016/j.molliq.2016.12.024
  28. M. Sheikholeslami, S.A. Shehzad, Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity, Int. J. Heat Mass Transf 109 (2017) 82-92. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.096
  29. M. Sheikholeslami, S.A. Shehzad, Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM, Int. J. Heat Mass Transf 113 (2017) 796-805. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.130
  30. R. Kumar, S. Sood, M. Sheikholeslami, S.A. Shehzad, Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations, J. Colloid Interface Sci. 505 (2017) 253-265. https://doi.org/10.1016/j.jcis.2017.05.083
  31. M. Sheikholeslami, M.M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, Int. J. Heat Mass Transf 111 (2017) 1039-1049. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.070
  32. R.E. Singleton, Fluid mechanics of gas-solid Particle Flow in Boundary Layers, Doctoral Dissertation, California Institute of Technology, 1964.
  33. M.A. Ezzat, A.A. El-Bary, M.M. Morsey, Space approach to the hydro-magnetic flow of a dusty fluid through a porous medium, Comput. Math. Appl. 59 (2010) 2868-2879. https://doi.org/10.1016/j.camwa.2010.02.004
  34. B.K. Jha, C.A. Apere, Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus, AIP Adv 1 (2011) 042121. https://doi.org/10.1063/1.3657509
  35. S. Siddiqa, M.A. Hossain, S.C. Saha, Two-phase natural convection flow of a dusty fluid, Int. J. Numer. Method Heat Fluid Flow 25 (2015) 1542-1556. https://doi.org/10.1108/HFF-09-2014-0278
  36. M.R. Mohaghegh, A.B. Rahimi, Three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet, J. Heat Transf 138 (2016) 112001. https://doi.org/10.1115/1.4033614
  37. B.J. Gireesha, B. Mahanthesh, P.T. Manjunatha, R.S.R. Gorla, Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension, J. Nigerian Mathematical Soc. 34 (2015) 267-285. https://doi.org/10.1016/j.jnnms.2015.07.003
  38. B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, P.T. Manjunatha, Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension, Heat Mass Transf 52 (2016) 897-911. https://doi.org/10.1007/s00231-015-1606-3
  39. B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, K.L. Krupalakshmi, Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid-particle suspension, Ain Shams Eng. J. (2016). https://doi.org/10.1016/j.asej.2016.04.020 (in press).
  40. K.K. Lakshmi, B.J. Gireesha, R.S. Gorla, B. Mahanthesh, Effects of diffusionthermo and thermo-diffusion on two-phase boundary layer flow past a stretching sheet with fluid-particle suspension and chemical reaction: A numerical study, J. Nigerian Math. Soc. 35 (2016) 66-81. https://doi.org/10.1016/j.jnnms.2015.10.003
  41. M.A. Hossain, N.C. Roy, S. Siddiqa, Unsteady mixed convection dusty fluid flow past a vertical wedge due to small fluctuation in free stream and surface temperature, Appl. Math. Comput. 293 (2017) 480-492.
  42. M. Turkyilmazoglu, Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces, Phys. Fluids 29 (2017) 013302. https://doi.org/10.1063/1.4965926
  43. S. Naramgari, C. Sulochana, MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles, Ain Shams Eng. J. 7 (2016) 709-716. https://doi.org/10.1016/j.asej.2015.05.015
  44. N. Sandeep, C. Sulochana, B.R. Kumar, Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface, Eng. Sci. Technol. Int. J. 19 (2016) 227-240. https://doi.org/10.1016/j.jestch.2015.06.004
  45. B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, Suspended particle effect on nanofluid boundary layer flow past a stretching surface, J Nanofluids 3 (2014) 267-277. https://doi.org/10.1166/jon.2014.1101
  46. M.A. El-Aziz, A.M. Salem, MHD-mixed convection and mass transfer from a vertical stretching sheet with diffusion of chemically reactive species and space-or temperature-dependent heat source, Canadian J. Phys. 85 (2007) 359-373. https://doi.org/10.1139/p07-048
  47. B. Mahanthesh, B.J. Gireesha, C.S.K. Raju, Cattaneo-Christov heat flux on UCM nanofluid flow across a melting surface with double stratification and exponential space dependent internal heat source, Informatics Med Unlocked 9 (2017) 26-34. https://doi.org/10.1016/j.imu.2017.05.008
  48. L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous, stretching surface with variable temperature, J. Heat Transf 107 (1985) 248-250. https://doi.org/10.1115/1.3247387
  49. C.H. Chen, Laminar mixed convection adjacent to vertical continuously stretching sheets, J. Heat Mass Transf 33 (1998) 471-476. https://doi.org/10.1007/s002310050217

Cited by

  1. Effects of Hall Current on Transient Flow of Dusty Fluid with Nonlinear Radiation Past a Convectively Heated Stretching Plate vol.387, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/ddf.387.352
  2. Two-Phase Flow of Dusty Casson Fluid with Cattaneo-Christov Heat Flux and Heat Source Past a Cone, Wedge and Plate vol.387, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/ddf.387.625
  3. Combined Effects of Frictional and Joule Heating on MHD Nonlinear Radiative Casson and Williamson Ferrofluid Flows with Temperature Dependent Viscosity vol.4, pp.6, 2017, https://doi.org/10.1007/s40819-018-0572-0
  4. Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source vol.14, pp.5, 2017, https://doi.org/10.1108/mmms-12-2017-0151
  5. Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source vol.15, pp.1, 2019, https://doi.org/10.1108/mmms-03-2018-0051
  6. Effectiveness of exponential heat source, nanoparticle shape factor and Hall current on mixed convective flow of nanoliquids subject to rotating frame vol.15, pp.4, 2017, https://doi.org/10.1108/mmms-08-2018-0146
  7. Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips vol.15, pp.5, 2017, https://doi.org/10.1108/mmms-11-2018-0183
  8. Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet vol.9, pp.1, 2017, https://doi.org/10.1063/1.5083972
  9. Three-Dimensional Boundary layer Flow and Heat Transfer of a Fluid Particle Suspension over a Stretching Sheet Embedded in a Porous Medium vol.8, pp.1, 2017, https://doi.org/10.1515/nleng-2018-0008
  10. Attributes of Activation Energy and Exponential Based Heat Source in Flow of Carreau Fluid with Cross-Diffusion Effects vol.44, pp.2, 2019, https://doi.org/10.1515/jnet-2018-0049
  11. Attributes of Activation Energy and Exponential Based Heat Source in Flow of Carreau Fluid with Cross-Diffusion Effects vol.44, pp.2, 2019, https://doi.org/10.1515/jnet-2018-0049
  12. Numerical Investigation on Convective Flow of Two-Phase MHD Dusty Nanofluids over a Wavy Surface with Brownian Motion and Thermophoresis Effects vol.5, pp.3, 2019, https://doi.org/10.1007/s40819-019-0645-8
  13. Interaction of thermal radiation in hydromagnetic viscoelastic nanomaterial subject to gyrotactic microorganisms vol.9, pp.5, 2017, https://doi.org/10.1007/s13204-018-00938-7
  14. Simulation of nanofluid thermal radiation in Marangoni convection flow of non-Newtonian fluid : A revised model vol.29, pp.8, 2017, https://doi.org/10.1108/hff-11-2018-0704
  15. Darcy-Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous-heterogeneous reactions vol.137, pp.6, 2017, https://doi.org/10.1007/s10973-019-08110-1
  16. An analytical approach to the metal and metallic oxide properties of Cu-water and $$\hbox {TiO}_{2}$$-water nanofluids over a moving vertical plate vol.93, pp.3, 2017, https://doi.org/10.1007/s12043-019-1797-0
  17. Viscous Dissipation and Joule Heating Effects in Non-Fourier MHD Squeezing Flow, Heat and Mass Transfer Between Riga Plates with Thermal Radiation: Variational Parameter Method Solutions vol.44, pp.9, 2017, https://doi.org/10.1007/s13369-019-04019-x
  18. Evacuating liquid coatings from a diffusive oblique fin in micro-/mini-channels : An application of condensation cooling process vol.138, pp.1, 2017, https://doi.org/10.1007/s10973-019-08243-3
  19. Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat vol.6, pp.4, 2017, https://doi.org/10.1016/j.jcde.2019.04.005
  20. Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions vol.29, pp.10, 2019, https://doi.org/10.1108/hff-06-2018-0301
  21. An effective modification of finite element method for heat and mass transfer of chemically reactive unsteady flow vol.24, pp.1, 2017, https://doi.org/10.1007/s10596-019-09920-w
  22. The impact of the Marangoni convection and magnetic field versus blood-based carbon nanotube nanofluids vol.234, pp.1, 2017, https://doi.org/10.1177/2397791419872892
  23. Computational Study on Three-Dimensional Convective Casson Nanofluid Flow past a Stretching Sheet with Arrhenius Activation Energy and Exponential Heat Source Effects vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5058751
  24. Solar radiative heat‐driven Sakiadis flow of a dusty nanoliquid with Brownian motion and an exponential space‐based heat source: Koo-Kleinstreuer-Li (KKL) model vol.50, pp.2, 2017, https://doi.org/10.1002/htj.21925
  25. Dynamics of dust particles in a conducting water-based kerosene nanomaterials: a computational approach vol.19, pp.8, 2017, https://doi.org/10.1515/ijcre-2020-0204
  26. Marangoni Convection of Dust Particles in the Boundary Layer of Maxwell Nanofluids with Varying Surface Tension and Viscosity vol.11, pp.9, 2017, https://doi.org/10.3390/coatings11091072