References
- G.M. Wing, An Introduction to Transport Theory, Wiley, 1962.
- L.R. Foulke, E.P. Gyftopoulos, Application of the natural mode approximation to space-time reactor problems, Nucl. Sci. Eng. 30 (3) (1967) 419-435. https://doi.org/10.13182/NSE67-A18402
- R. Borsari, T. Trombetti, P. Vestrucci, Time-varying modes in space-dependent nuclear reactor kinetics by a perturbation approach, Transport Theor. Stat. Phys. 24 (1-3) (1995) 173-202. https://doi.org/10.1080/00411459508205125
- K. Dugan, I. Zmijarevic, R. Sanchez, Cross-section homogenization for reactivity-induced transient calculations, J. Comput. Theor. Transport 45 (6) (2016) 425-441. https://doi.org/10.1080/23324309.2016.1188116
- T. Porsching, On the spectrum of a matrix arising from a problem in reactor kinetics, SIAM J. Appl. Math. 16 (2) (1968) 301-317. https://doi.org/10.1137/0116024
- Y. Asahi, Theory of Omega-d modes, J. Nucl. Sci. Technol. 12 (2) (1975) 92-106. https://doi.org/10.1080/18811248.1975.9733075
- J. Devooght, Spectrum of the multigroup-multipoint diffusion operator with delayed neutrons, Nucl. Sci. Eng. 67 (2) (1978) 147-161. https://doi.org/10.13182/NSE78-A15432
- T. Gozani, The concept of reactivity and its application to kinetic measurements, Nukleonik (West Germany) 5 (1963). Discontinued with 12.
- D. Cacuci, Y. Ronen, Z. Shayer, J. Wagschal, Y. Yeivin, Eigenvalue-dependent neutron energy spectra: definitions, analyses, and applications, Nucl. Sci. Eng. 81 (3) (1982) 432-442. https://doi.org/10.13182/NSE82-A20284
- A. Henry, The application of inhour modes to the description of non-separable reactor transients, Nucl. Sci. Eng. 20 (3) (1964) 338-351. https://doi.org/10.13182/NSE64-A19579
- K. Yosida, Functional Analysis, Narosa Publishing House, Delhi, 1965.
- R. Sanchez, Duality, Green's functions and all that, Transport Theor. Stat. Phys. 27 (5-7) (1998) 445-476. https://doi.org/10.1080/00411459808205638
- G.R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley Pub. Co, 1965.
- A. DALL'OSSO, Neutron spectrum kinetics in the infinite homogeneous reactor, Ann. Nucl. Energy 85 (2015) 662-669. https://doi.org/10.1016/j.anucene.2015.06.022
- T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
- J. Planchard, Methodes mathematiques en neutronique, Eyrolles, 1995.
- T. Gozani, Subcritical Reactor Kinetics and Reactivity Measurements, Ph.D. thesis, 1962. Diss. Naturwiss. ETH Zurich, Nr. 3288, 0000. Ref.: Halg, W.; Korref.: Schmid, P., 1962.
Cited by
- STUDY OF THE EIGENVALUE SPECTRA OF THE NEUTRON TRANSPORT PROBLEM IN PN APPROXIMATION vol.247, pp.None, 2017, https://doi.org/10.1051/epjconf/202124703018
- Eigenvalue Formulations for the PN Approximation to the Neutron Transport Equation vol.50, pp.5, 2017, https://doi.org/10.1080/23324309.2020.1856879