DOI QR코드

DOI QR Code

Analysis of alpha modes in multigroup diffusion

  • Sanchez, Richard (Department of Nuclear Engineering, Seoul National University) ;
  • Tomatis, Daniele (DEN, Service d'etudes des reacteurs et de mathematiques appliquees, CEA, Universite Paris-Saclay) ;
  • Zmijarevic, Igor (DEN, Service d'etudes des reacteurs et de mathematiques appliquees, CEA, Universite Paris-Saclay) ;
  • Joo, Han Gyu (Department of Nuclear Engineering, Seoul National University)
  • Received : 2017.06.02
  • Accepted : 2017.07.12
  • Published : 2017.09.25

Abstract

The alpha eigenvalue problem in multigroup neutron diffusion is studied with particular attention to the theoretical analysis of the model. Contrary to previous literature results, the existence of eigenvalue and eigenflux clustering is investigated here without the simplification of a unique fissile isotope or a single emission spectrum. A discussion about the negative decay constants of the neutron precursors concentrations as potential eigenvalues is provided. An in-hour equation is derived by a perturbation approach recurring to the steady state adjoint and direct eigenvalue problems of the effective multiplication factor and is used to suggest proper detection criteria of flux clustering. In spite of the prior work, the in-hour equation results give a necessary and sufficient condition for the existence of the eigenvalue-eigenvector pair. A simplified asymptotic analysis is used to predict bands of accumulation of eigenvalues close to the negative decay constants of the precursors concentrations. The resolution of the problem in one-dimensional heterogeneous problems shows numerical evidence of the predicted clustering occurrences and also confirms previous theoretical analysis and numerical results.

Keywords

References

  1. G.M. Wing, An Introduction to Transport Theory, Wiley, 1962.
  2. L.R. Foulke, E.P. Gyftopoulos, Application of the natural mode approximation to space-time reactor problems, Nucl. Sci. Eng. 30 (3) (1967) 419-435. https://doi.org/10.13182/NSE67-A18402
  3. R. Borsari, T. Trombetti, P. Vestrucci, Time-varying modes in space-dependent nuclear reactor kinetics by a perturbation approach, Transport Theor. Stat. Phys. 24 (1-3) (1995) 173-202. https://doi.org/10.1080/00411459508205125
  4. K. Dugan, I. Zmijarevic, R. Sanchez, Cross-section homogenization for reactivity-induced transient calculations, J. Comput. Theor. Transport 45 (6) (2016) 425-441. https://doi.org/10.1080/23324309.2016.1188116
  5. T. Porsching, On the spectrum of a matrix arising from a problem in reactor kinetics, SIAM J. Appl. Math. 16 (2) (1968) 301-317. https://doi.org/10.1137/0116024
  6. Y. Asahi, Theory of Omega-d modes, J. Nucl. Sci. Technol. 12 (2) (1975) 92-106. https://doi.org/10.1080/18811248.1975.9733075
  7. J. Devooght, Spectrum of the multigroup-multipoint diffusion operator with delayed neutrons, Nucl. Sci. Eng. 67 (2) (1978) 147-161. https://doi.org/10.13182/NSE78-A15432
  8. T. Gozani, The concept of reactivity and its application to kinetic measurements, Nukleonik (West Germany) 5 (1963). Discontinued with 12.
  9. D. Cacuci, Y. Ronen, Z. Shayer, J. Wagschal, Y. Yeivin, Eigenvalue-dependent neutron energy spectra: definitions, analyses, and applications, Nucl. Sci. Eng. 81 (3) (1982) 432-442. https://doi.org/10.13182/NSE82-A20284
  10. A. Henry, The application of inhour modes to the description of non-separable reactor transients, Nucl. Sci. Eng. 20 (3) (1964) 338-351. https://doi.org/10.13182/NSE64-A19579
  11. K. Yosida, Functional Analysis, Narosa Publishing House, Delhi, 1965.
  12. R. Sanchez, Duality, Green's functions and all that, Transport Theor. Stat. Phys. 27 (5-7) (1998) 445-476. https://doi.org/10.1080/00411459808205638
  13. G.R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley Pub. Co, 1965.
  14. A. DALL'OSSO, Neutron spectrum kinetics in the infinite homogeneous reactor, Ann. Nucl. Energy 85 (2015) 662-669. https://doi.org/10.1016/j.anucene.2015.06.022
  15. T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
  16. J. Planchard, Methodes mathematiques en neutronique, Eyrolles, 1995.
  17. T. Gozani, Subcritical Reactor Kinetics and Reactivity Measurements, Ph.D. thesis, 1962. Diss. Naturwiss. ETH Zurich, Nr. 3288, 0000. Ref.: Halg, W.; Korref.: Schmid, P., 1962.

Cited by

  1. STUDY OF THE EIGENVALUE SPECTRA OF THE NEUTRON TRANSPORT PROBLEM IN PN APPROXIMATION vol.247, pp.None, 2017, https://doi.org/10.1051/epjconf/202124703018
  2. Eigenvalue Formulations for the PN Approximation to the Neutron Transport Equation vol.50, pp.5, 2017, https://doi.org/10.1080/23324309.2020.1856879