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a b s t r a c t

The alpha eigenvalue problem in multigroup neutron diffusion is studied with particular attention to the
theoretical analysis of the model. Contrary to previous literature results, the existence of eigenvalue and
eigenflux clustering is investigated here without the simplification of a unique fissile isotope or a single
emission spectrum. A discussion about the negative decay constants of the neutron precursors con-
centrations as potential eigenvalues is provided. An in-hour equation is derived by a perturbation
approach recurring to the steady state adjoint and direct eigenvalue problems of the effective multi-
plication factor and is used to suggest proper detection criteria of flux clustering. In spite of the prior
work, the in-hour equation results give a necessary and sufficient condition for the existence of the
eigenvalue-eigenvector pair. A simplified asymptotic analysis is used to predict bands of accumulation of
eigenvalues close to the negative decay constants of the precursors concentrations. The resolution of the
problem in one-dimensional heterogeneous problems shows numerical evidence of the predicted
clustering occurrences and also confirms previous theoretical analysis and numerical results.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The kinetic neutron equation with precursors is an efficient tool
for the analysis of the neutron time evolution and, therefore, finds
multiple applications in reactor control and the study of accident
scenarios. The time-dependent flux depends on the initial condi-
tions for neutrons and precursors, the boundary condition for
neutrons, the presence of external sources and the time-dependent
changes of the cross-sections, such as those produced by rod mo-
tion and changes of Boron concentration or to small stochastic
perturbations induced by the coolant flow and, in the long time, by
radioactive decay and nuclide depletion and creation from fission.

However, if the cross-sections and boundary conditions remain
constant in time and the sources vanish, then the state of the sys-
tem tends asymptotically in time to an exponential behavior, which
is independent of the earlier changes of the system and, specially, of
the initial conditions [1].

The exponential behaviors that a given system can adopt are the
solutions of an eigenvalue equation and can be used to describe the
fast evolution of the system as well as to characterize the reactivity
of the system. The solutions of this equation are known as time-

dependent modes or, more simply, alpha modes, where “alpha”
refers to the most frequently adopted symbol for these eigenvalues.

Alpha modes have been applied to formally derive different
forms of the well-known in-hour equation, to obtain solutions of
the kinetic equations by expansion techniques [2], to develop nu-
merical solution methods [3] and also as weighting fluxes to ho-
mogenize the kinetic equation [4]. These applications, as well as the
theoretical interest, of alpha modes have been the object of intense
study. However, with the exception of a few scattered mathemat-
ical results [5e7], a detailed description of these modes have not
yet been given for the diffusion equation. The purpose of this paper
is to give a detailed analysis of the alpha modes for a slab geometry
using multigroup diffusion theory. We give ample numerical evi-
dence for all the modes predicted from mathematical analysis as
well as from physical arguments.

General equations for the alpha eigenvalue problem are discussed
inThe alpha eigenvalue equations, including a perturbation expression
in terms of reactivity. In Summary of resultswe summarize our results
and observations for the multigroup one-dimensional slab. Some
numerical results are illustrated in Numerical results, while in Com-
parisonwith Asahi's resultswe comparewithAsahi's analytical results
for the one-group problem [6]. Conclusions follow.

For simplicity we shall use a notation based on a continuous
formulation and leave it to the reader to the change to a fully dis-
cretized operator which is used in the numerical application.
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2. The alpha eigenvalue equations

Our starting point is the time-dependent kinetic diffusion
equations coupled to the precursors equations in a heterogeneous
domain D:

8><
>:

�
1
v
vt þ bpr

�
j ¼

X
p

cplpCp; ðaÞ

�
vt þ lp

�
Cp ¼ Fpj: ðbÞ

(1)

Here j(x,t) is the scalar flux, x ¼ (r,E) stands for the phase space
variables, Cp(r,t) is the concentration for precursor p and

bpr ¼ L� Ppr

is the diffusion kinetic operator with prompt neutron production

L ¼ �V,DVþ S�H; (2)

where D(x,t) is the diffusion coefficient, S(x,t) is the total macro-
scopic cross-section,H stands for the scattering operator and Ppr ¼
P
i
cið1� biÞF i is the prompt fission operator with the sum in i over

the fissile isotopes.
Also in Eqs. (1b) and (2), Fp ¼

P
i
bi/pF i and F i are the

production operators for precursor p and neutrons from isotope i,
respectively. The latter is defined as F ij ¼

R
n
P

f ;ijdE. We note Np

and Ni the number of precursors and fissile isotopes, respectively,
and take the prompt and delayed fission spectra, ci and cp, to be
normalized so that

R
cdE ¼ 1.

By introducing the reduced scalar product over the energy E,

〈f ; g〉 ¼
Z

f gdE; (3)

where f denotes the complex conjugate of f, the two latter formulas
can be written as F ij ¼ hnSf ;i;ji and 〈1;c〉 ¼ 1. Finally, lp and bi/p

are the decay constants for the precursor p and its fission yield from
isotope i, respectively, and bi ¼

P
p
bi/p is the total precursor yield

for isotope i. We shall follow the usual convention of ordering lp in
increasing values.

The kinetic equations in (1) are supplemented with initial
conditions for both j and Cp and with boundary conditions for j.
The cross-sections, external source and boundary conditions may
change in time. But at any time t ¼ t* one might consider a new
kinetic problemwith the initial and boundary conditions at time t*
and such that for t > t* the cross-sections and boundary conditions
remain constant and the external source vanishes. This defines a
kinetic problem with constant cross-sections and boundary con-
ditions and with no external source which will evolve in time ac-
cording solely to its initial conditions at t*.

The alpha eigenvalue equations for this t* -kinetic problem are
obtained by introducing an exponential time behavior in (1),

jðx; tÞ � eatjaðxÞ;Cpðr; tÞ � eatCp;aðrÞ;

to obtain:

8><
>:

�a
v
þ bpr

�
ja ¼

X
p

cplpCp;a; ðaÞ

�
aþ lp

�
Cp;a ¼ Fpja: ðbÞ

(4)

Here ja(x) and Cp,a(r) are respectively the scalar flux and the con-
centration for precursor p of an a-mode, and all other quantities
and operators are like those defined for the time-dependent kinetic
equation but with the cross-sections evaluated at time t*.

More generally, by introducing the vector function

Ja ¼ fja; C
!

ag, where C
!

a has components fCp;a;a ¼ 1;Npg, the set
of alpha equations can be written in the form of a classical linear
eigenvalue problem:

MJ
!

a ¼ aJ
!

a; (5)

where the structure of the matrix operator M, not stated here, can
be inferred from Eq. (4).

When appropriate we shall use Hilbert spaces for a precise
formulation of results. We note that HX the Hilbert space of
complex-valued functions defined over phase space X and satis-
fying the boundary conditions of problem (4). This space is
endowed with the scalar product

ðf ; gÞ ¼
Z

X

f ðxÞgðxÞdx; (6)

where dx¼drdE is the volume element in X . We also noteHD is the
Hilbert space of complex-valued functions defined over the
geometrical domain D with scalar product

ðf ; gÞD ¼
Z

D

f ðrÞgðrÞdr:

Thus, we consider problem (5) in the Hilbert space of complex-

valued functions HX � ðHDÞNp with scalar product

��
J
!
;J
!0��

¼
�
j;j0�þX

p

�
Cp;C0

p

�
D
:

A useful form of the alpha-equations can be obtained by solving
Eq. (4b) for the precursor concentrations:

Cp;a ¼ F pja

aþ lp
; a2ℂ\L; (7)

where L ¼ f � lp; p ¼ 1;Npg. Next, replacing this result in Eq. (4a)
yields an expression for the alpha-eigenvalue problem in terms of
only the flux:

�a
v
þ B

�
ja ¼ �Kaja; a2ℂ\L; (8)

where B ¼ L � P,

P ¼
X
i

ciF i (9)

is the production operator with the steady-state fission spectrum

ci ¼ ð1� biÞci þ
X
p

bi/pcp (10)

and

Ka ¼
X
p

a

aþ lp
cpFp (11)

comes from the delayed contribution to production. We consider
this problem in HX .
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We note that Eq. (8) is a non linear eigenvalue problem for
(a,ja). Moreover, as we will discuss next, except for very patho-
logical cases,L is in the resolvent set of the linear operator in Eq. (5)
and therefore Eqs. (4) and (8) are equivalent.

Let us analyze in which conditions a ¼ �lp can be in the spec-
trum of Eq. (4). If this is true, then one must have from Eq. (4b)

F pja ¼ 0: (12)

We note that one canwrite F p ¼ hpp where hðrÞ ¼ ðF p1ÞðrÞ and
pp ¼ h�1Fp is a projector pp : HX/HD . Equivalently, constraint
(12) can be written as

ja2ker
�
pp
�
;

where ker(pp) is the null space of pp. For the other precursors one
obtains

Cp0;a ¼ 1
lp0 � lp

Fp0ja; p0sp; (13)

which yields a source equation for the flux:

bbja ¼ cplpCp;a; (14)

where

bb ¼ b� lp
v
�
X
p0sp

lp
lp0 � lp

cp0F p0 :

Hence, a solution of Eq. (14) with the constraint in (12) is a pair

ðja; Cp;a ¼ bbja=ðcplpÞÞ1 iff2 (i) 0sja2ker(pp), (ii) bbja2Ep, where
we have defined Ep ¼ ff ðxÞ ¼ cpðEÞhðrÞ; hðrÞ2HDg. In other

words �lp is an alpha-eigenvalue iff bbðkerðppÞ=f0gÞ∩Eps∅.

Although this iff condition does not apparently require operator bb
to have an inverse, an equivalent formulation can be written as

bb�1
Ep∩ðkerðppÞ=f0gÞs∅. Thus, a solutionmight exists if operator bb

is degenerated or if it is invertible over Ep; the former condition
seems unrealistic but the second looks plausible because v is large
and S contains scattering, capture and fission and therefore dom-
inatesH. However, in both cases the solution of equation (14) must
satisfy the orthogonality condition (12), which most likely will not
be feasible. Therefore, with the exception of unrealistic cross-
sections, the existence of an alpha eigenvalue equal to minus a
precursor decay constant can be excluded.

Clearly the precedent conclusion applies to the case of the one-
group diffusion equation. But here we give a counter example for
which �lp is an alpha eigenvalue. Consider the case when the
diffusion coefficient does not depend on the energy, D ¼ D(r), and
take ja(x) ¼ f(E)h(r) with ppf ¼ 0 and h(r) an eigenfunction of the
Laplacian equation �V,DVh ¼ gh which satisfies the boundary

conditions of the alpha problem. Then bbja ¼ hbbgf , where bbg equals
bb with the replacement �V,DV/g. Therefore, by setting

cp ¼ bbgf =c, where cðrÞ ¼
R bbgfdE, the pair ðja;Cp;a ¼ ðc=lpÞhÞ is a

solution of the alpha eigenvalue problem for a ¼ �lp. A problem
with the definition of cp is that it depends on space, but this can be
avoided by considering a homogeneous problem. However, even
then, one would have to “adjust” the cross-sections, perhaps with
nonphysical values, so as to ensure that cp remains positive.

2.1. Perturbation formulation

Reactivity is a measure of the disequilibrium of a system and
there are several ways to introduce a notion of reactivity in neutron
kinetics [8,9], in particular that derived with the help of the adjoint
a equation [10]. In this work we define a generalized reactivity as
rl ¼ 1�1/l, where l is any eigenvalue of the quasi-static eigenvalue
equation obtained by setting a ¼ 0 in Eq. (8):

bl4l ¼ 0; (15)

where

bl ¼ L� ð1=lÞP: (16)

Here l2spðL�1PÞ, where sp denotes the point spectrum of the
operator, is an eigenvalue of the quasi-static diffusion operator and
P is the steady-state production operator in Eq. (9). The boundary
condition for Eq. (15) is that of the parent alpha eigenvalue equa-
tions. We note El and Nl, respectively, the subspace of eigenfunc-
tions of eigenvalue l and its dimension. We recall that the
eigenvalue l ¼ k with maximum absolute value in sðL�1PÞ is real,
non degenerate and has a positive eigenfunction 4k (a physical
flux).

In order to analyze the solutions of the alpha-eigenvalue
equation it is advantageous to write Eq. (8) in terms of the quasi-

static operator bl in (16) and cast the alpha-eigenvalue equation as

blja ¼ Kl;aja; (17)

where l2spðL�1PÞ and

Kl;a ¼ rlP �
�a
v
þKa

�
: (18)

The appeal of formulation (17) is that (i) it offers a perturbation
expression for the alpha eigenvalue problem in terms of the better

known steady-state eigenvalue problem, and (ii) the operator bl on
the left of the equal sign is singular and therefore the “source” term
Kl;aja must satisfy a solvability condition.

According to the Riesz-Schauder theory [11], the solvability
condition requires the source term to be in the orthogonal com-

plement E⊥ of the eigenspace Ey
l
associated to the eigenvalue

l2sððPL�1ÞyÞ of the adjoint operator b
y
l
.3 More explicitly,

�
4y;Kl;aja

�
¼ 0c4y2Ey

l
: (19)

Thus, the solvability condition results in a system of Nl one-

point-like “kinetic” alpha equations. For each function 4y2Ey
l
we

have an in-hour-type equation:

rl ¼ a

 
Lþ

X
p

Gp

aþ lp

!
; (20)

where

L ¼
�
4y; 1vja

�
�
4y;Pa

� ; Gp ¼

�
4y;cpF pja

�
�
4y;Pja

� : (21)

1 For simplicity, we assume that cp is strictly positive.
2 if and only if.

3 It is understood that the adjoint operator is provided with appropriate “adjoint”
boundary conditions [12].
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As an aside, we note that in Eq. (21) one can write
Gp ¼

P
i
bi/pgi;p with the effectiveness factors [13]

gi;p ¼
R
h4y

k;cpihnSf ;i;jaidr=ð4
y
k;PjaÞ and ð4y

k;PjaÞ ¼
P
i

R
h4y

k;cii

hnSf ;i;jaidr, recovering thus the formula derived for an infinite

homogeneous medium in [14]. Also, because of the projection by 4y

the original eigenvalue a is dispersed among the Npþ1 roots of Eq.
(20).

Under the solvability constraint (19), the general solution of (17)
is an arbitrary multiple of

ja ¼ 4l þ j⊥; (22)

where 4l ¼
P
n
an4n is written using an arbitrary basis

f4n;n ¼ 1;Nlg in El and j⊥2E⊥. The latter condition entails

an ¼
�
4
y
n;ja

�
; (23)

where the f4y
n;n ¼ 1;Nlg is the dual basis in Ey

l
, i.e., such that

ð4y
n;4n0 Þ ¼ dnn0 .
We end this section with a comment regarding the effect of

spatial symmetries on the structure of the in-hour equation.
Consider a problem with a spatial involution, that is a symmetry s
such that s2 ¼ 1. Then ja obeys the relation s2ja ¼ ja and, since
operator s2 has eigenvalues 1 and�1, one canwrite ja as the sum of
an even (þ) and an odd (�) components ja;± ¼ ðs±1Þja with the
property that

R
drja;þðrÞja;�ðrÞ vanishes. Because both the steady-

state transport equation and the alpha eigenvalue equation neces-
sarily share the same geometry one concludes that the in-hour
equation does not exist when 4y and ja have opposite symmetries.

3. Summary of results

The spectrum of the alphamode equations is conditioned by the
nature of these equations and by the degree of complexity accepted
in the delayed neutron term. In the continuous case the eigen-

modes, J
!

aðxÞ, belong to a functional space of infinite dimensions,
while in the discretized case they become vectors in a finite-
dimensional space. On the other hand, the degree of complexity
of the fission delayed contribution depends on the number of fissile
isotopes Ni and the number of precursors Np. The operator in Eq.
(11) can be written as a sum of projectors with r-dependent
coefficients:

Ka ¼
X
p

a

aþ lp
appp; (24)

where apðrÞ ¼ F pcp and pp ¼ ð1=apÞcpFp is a projector over the
subspace generated by the fcp; p ¼ 1;Npg. Therefore, for a;f0∪Lg,
Ka is a finite linear combination of projectors with finite range
equal to the span of the functions fcp; p ¼ 1;Npg. Moreover, the null
space of Ka contains the set of all the functions that are orthogonal
to the finite set fnSf ;i; i ¼ 1;Nig.

Simplifications of the fission delayed contributions are typically
introduced to facilitate the theoretical analysis of the alpha spec-
trum. A simplifying assumption can be applied to the delayed
fission spectra, to the fission production or to both. The first con-
sists of replacing all the delayed neutron spectra with an averaged
one, cp � c, which leads to the simplified form Ka ¼ cFa, where
Fa ¼

P
p
½a=ðaþ lpÞ�F p. In the second one replaces the fission pro-

duction for all fissile isotopes with a single one, nSf ;i � wiðrÞnSf ,

where by convenience we assume
P
1
wiðrÞ ¼ 1. This approximation

yield the simplified form Ka ¼ caF , where now
ca ¼

P
p
½a=ðaþ lpÞbpcp� with bpðrÞ ¼

P
i
wiðrÞbi/p. Note that these

approximations are automatically satisfied if one assumes one
single precursor (c ¼ c1) or one single fissile isotope (w1 ¼ 1 and
bp ¼ b1/p). Finally, when both approximations are used one has
the simplified operator

Ka ¼ faðrÞcF ; (25)

where

faðrÞ ¼
X
p

a

aþ lp
bpðrÞ: (26)

Note that for a single fissile isotope bp(r) ¼ bp, while for a ho-
mogeneous medium bp ¼

P
i
wibi/p. For both cases fa(r) is inde-

pendent of r and is an analytical function of a in ℂ\L.
There is a sizable number of theoretical studies of the alpha

spectrum in transport theory but, to our knowledge, there are only
three communications pertaining to diffusion theory. Porsching [5]
used algebraic techniques to analyze the spectrum of the alpha
mode discretized diffusion equations in a homogeneous medium
with a single fissile isotope. However his equations were based on a
synthetic expression for the time-dependent flux and, regarding
the present standard alpha eigenvalue problem, Porsching's results
apply only to the one-group diffusion equation. A generalization to
the multigroup diffusion equation was carried out by Devooght [7]
for the fully discretized diffusion equation in a heterogeneous
medium with no upscattering and with a single fissile isotope. To
simplify the delayed fission term, Devooght assumes that all the
fissile neutron spectra are identical, i.e., not only that cp~c but also
c1 � c, which lead him to lump prompt and delayed fission in a
single term and work with the function f(a)¼1�fa, which is also
analytical in ℂ\L. This functionwas used in the general study of the
spectrum. The analysis of the fast spectrum, based on a perturba-
tion result for the case of degenerated operators discussed in Kato
[15], was carried out for the case with no precursors, while a
technique early introduced by Wings [1] was applied to the
investigation of the degeneracy of the delayed spectrum. The result
of the analysis is that the spectrum consists of Ng þ Np clusters of Nr

eigenvalues each, where Ng and Nr are the number of groups and
the number of spatial components, respectively. The delayed
spectrum has Np clusters of real eigenvalues with the p-th cluster
confined to the open interval4

Ip ¼
�
� lp;�lp�1

�
(27)

with the convention that �l0 ¼ ∞. The only theoretical result for
the one-group continuous diffusion equation in the one-
dimensional heterogeneous slab geometry was given by Asahi [6]
a few years earlier than Devooght's paper but seemingly un-
known to the latter. Asahi demonstrated that for an arbitrary ge-
ometry, the eigenvalues were real and bounded and that the �lp
values were not in the spectrum. He also gave a more detailed
analysis for the case of the one-dimensional slab, classifying the

4 In reality, the result obtained by Devooght is that the �lp also belongs to the
p-th clusters and that, therefore, the precursor clusters contain Nrþ1 eigenvalues
each. However, he recognized that this pathological result occurred because he had
artificially replaced the precursor concentrations Cp(r) with the energy dependent
functions C)

p ðr; EÞ ¼ cpðEÞCpðrÞ resulting in the associated eigenvalue problem
having NrNp(Ng�1) more eigenvalues than the original one.
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eigenfunctions by the number of nodes and showing that there are
a countable infinite number of eigenvalues in each interval Ipwhich
accumulate at �lp as well as in the open interval

ILNp
¼
�
�∞;�lNp

�
: (28)

The rightmost eigenvalue in each interval has an eigenfunction
with positive flux (zero nodes) and the number of nodes of the
eigenfunction fluxes increases monotonously by one for the other
eigenvalues in the interval. Finally, as shown in Appendix A, an
analytical solution can be obtained for the one-group homoge-
neous casewhich confirms the structure of the prompt and delayed
spectrum as well as the emergence of flux clustering. This result
leads to a new derivation of Asahi's results for the one-group ho-
mogeneous finite slab (see Appendix B).

In the second part of this section, we give general observations
in the nature of the spectrum of the alpha eigenvalue problem
derived from robust arguments and from numerical exploration of
multigroup diffusion in a slab geometry. Our results match the
known theoretical predictions in their restricted domain of validity
[5e7]. Our discretization was done for the one-dimensional
piecewise heterogeneous slab geometry by writing the linear
alpha eigenvalue equations (5) in their multi-group form and by
introducing a numerical discretization for the spatial dependence

of both j and C
!
. We observe that the number of degrees of freedom

(DOF) of the discretized system of equations is

NDOF ¼ Nr
�
Ng þ Np

�
: (29)

A natural ordering is built in the kinetic equations. This ordering
stems from the observation that most of the neutrons resulting
from fission are prompt and that, therefore, the contribution of
delayed neutrons to the overall neutron production in the kinetic
equations can be considered as small. In addition, the frequencies of
emission of delayed neutrons are also much smaller than the
neutron collision frequency. These two conditions can be expressed
as

bp≪1 and lp≪vS:

In the following we shall assume that all cross-sections are O(1)
and we shall define εb ¼ O(b) and εv ¼ O(1/v). Physical data tells us
that εb~10�3�10�4 and εv~10�5�10�9.

This ordering has direct implications on the distribution of the
alpha spectrum, which can be sorted out into two subsets: delayed
and prompt eigenvalues.

3.1. Delayed spectrum

These modes appear in the range
��a�� � OðlpÞ, in Np clusters of Nr

eigenvalues each, for a total of NrNp eigenvalues (see Fig. 1). The
eigenvalues in the p-th cluster gather on the right of �lp:

�lp <ap;Nr
<…<ap;2 <ap < � lp�1;

where ap,i is the i-th eigenvalue of the cluster in the interval Ip.
Also, we have written ap,1 simply as ap to indicate the special

nature of the dominant mode in the cluster. While the other ei-
genvalues in the cluster are very close to �lp and their values do
not change much with the reactivity, the value of the dominant
eigenvalue ap increases with the reactivity towards �lp�1. The
delayed eigenvalues are simple and real negative with the
exception of a1 which becomes positive for positive reactivity.
This latter eigenvalue admits a positive eigenvector (both fluxes
and concentrations are positive). The remaining dominant ei-
genvalues (ap,p > 1) have positive fluxes but the concentrations
change sign.

The p-th cluster can be analyzed using the expression

aþ lp ¼ εp (30)

and considering the eigenvalue problem for jεpj/0. The analysis
shows that there is a leading concentration for each of the Np

clusters which, because of the special variation degenerates into Nr

independent distributions. Hence, this part of the spectrum can
also be named “precursor” spectrum. We have also made the
conjecture that the eigenmodes concentrations in each cluster are
linearly independent and this has been supported by all our
calculations.

In order to analyze the clustering results we resort to an
approach different from the ones adopted in the literature. We
recognize that the behavior of the delayed spectrum is directly
related to the changes undergone by the precursors concentrations
and, therefore, replace Eq. (8) with an “equivalent” equation for the
concentrations. We use Eq. (7) to write the delayed contribution in
Eq. (8) in terms of the concentrations and by making the ja in the
resulting equation explicit we write

ja ¼ �
�
a=vþ b

��1
a
X
p

cpCp;a;a;s
�
�vb

�
: (31)

Next operating on this equationwith ðaþ lpÞ�1F p yields a finite
system of equations for the concentrations, which we choose to
write as:

�
aþ lp

�
Cp;aðrÞ ¼ �a

X
p0

�
T pp0;aCp0;a

�
ðrÞ;a;s

�
�vb

�
; (32)

where T pp0 ;a is an integral operator over E and r with kernel

tpp0;aðr0/rÞ ¼
Z

dEnSf ;pðxÞ
Z

dE0cp0 ðE0Þgaðx0/xÞ; (33)

where nSf ;p ¼
P
i
bi/p is the fission production term for precursor

Cp, x ¼ ðE; rÞ and gaðx0/xÞ is the Green's function of operator

ða=vþ bÞ�1. We note that Eq. (32) is not equivalent to Eq. (8) for the
simple reason that the energy variable does not appear in the
former equation. This can be stated more precisely for the dis-
cretized case where the number of DOF for Eq. (32) is NrNp whereas
Eq. (8) has NrNgNp DOF. This shows that, except for the one-group
case, the two equations are not equivalent. However, if a is an

eigenvalue of Eq. (32) with eigenvector C
!

aðrÞ and a;sð�vbÞ, then
a is also an eigenvalue of the full alpha problem in Eq. (8) with the
eigenvector given by Eq. (31).

Thus, we can safely use Eq. (32) to analyze the delayed alpha
spectrum. We introduce the assumption in Eq. (30) and use
asymptotic analysis to study the behavior of the spectrum near�lp.
A full analysis would consist of expanding the concentrations and
the eigenvalue as a sum of increasing powers of εp, but here we use
a rough approximation and keep only the leading terms in the
equation. However, the discussion is awkward when working with

Fig. 1. Clusterings of eigenvalues approaching the negative values of the precursor's
decay constants.
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Eq. (32) andwe shall instead take a step back andworkwith Eqs. (7)
and (8). We notice first that, consistently with Eq. (7), we have
Cp;a ¼ F pja=εp � ε

�1
p and, for p0sp, Cp0;a ¼ F p0ja=ðlp0 � lp þ εpÞ

� Oð1Þ.
Hence, we can neglect the contribution from the p

0
sp pre-

cursors in the sum in the right-hand-side of Eq. (8). Following the
derivation of Eq. (32), this implies that the system of equations in
(32) uncouples and, in particular, yields a single equation for Cp,a. To
simplify our notation we write this equation as follows

εpCp;aðrÞ ¼ lp
�
T aCp;a

�
ðrÞ;a;s

�
�vb

�
(34)

with εp now playing the role of the eigenvalue. Still, this last equa-
tion is difficult to analyze and we should simplify the operator by
keeping only the leading contributions. Going back to Eq. (8), we
observe that because F p � εb, the order of the right-hand term in
this equation is ε�1 ¼ εb/εp instead of εp�1. So, in order to have ε≪1,
we have to assume εp≪εb. Having made sure that the right-hand-

side of Eq. (8) is ~ε�1, we observe that on the left-hand-side ða=vþ
S�H� bÞj � Oð1Þ so we have a=vþ b � �V,DðE; rÞV. The spec-
trum of this operator consists of a countable infinite number of real
positive eigenvalues growing towards þ∞; these eigenvalues have
finite multiplicity and the corresponding eigenfunctions form a
complete basis in L2 [16]. It follows that the inverse of this operator
is compact and definite positive and its Green's function is of the
form gaðE; r0/rÞ, where E appears only as a parameter. This implies
that the operator T is also compact, and therefore it has real ei-
genvalues, but it is not necessarily definite positive. However, it is
easily verified that for a homogeneous medium, as well as in the
one-group case, T is definite positive and therefore its eigenvalues
are positive and accumulate at zero. This proves that the eigenvalues
a which converge towards �lp do this from the right ða> � lpÞ.

3.2. Prompt spectrum

The remaining part of the spectrum lies on the complex plane
<ðaÞ< � lNp

and consists of simple eigenvalues that are real or
complex conjugated in the range jaj � OðvSÞ; the exception is the
first dominant eigenvalue aNpþ1 which is real and, with increasing
reactivity tends to �lNp. The eigenvectors have negligible concen-
tration values and they are dominated by energy modes.

To analyze these eigenvalues we use again an asymptotic
approach by assuming that a~O(v). Hence, one can neglect the
contribution of the delayed neutrons and write the alpha eigen-
value equation by keeping only the leading terms as
�a
v
þ bpr

�
ja � 0: (35)

This shows that the prompt spectrum is closely related to the
spectrum of the diffusion equation with prompt fission,
a2s(�vB pr).

3.3. Flux clustering

We use the expression flux clustering to refer to a set of distinct
eigenvalues which have very close fluxes. Flux clustering for the
alpha eigenvalue transport problem was discussed earlier by
Gozani [17] and by Henry [10]. Gozani applied his analysis also to
diffusion theory, but the most interesting result was Henri's anal-
ysis of the two-group P1 transport equation, which is closely
related to diffusion; by using the analytical solutions of this prob-
lem, Henri was able to give a satisfactory argument, albeit non
rigorous, in support of flux clustering.

The flux components of the Npþ1 dominant alpha modes can
be shown to cluster about the dominant mode of the quasi-static
equation 4k. This includes the dominant modes in the delayed
spectrum (ap,p ¼ 1,Np) plus the dominant mode of the prompt
spectrum (aNpþ1). It can also be expected that non-dominant
delayed modes can exhibit some form of flux clustering, like
sharing the same number of spatial fluctuations in the slab case,
and that this type of flux clustering might even apply to prompt
modes. However, in our numerical calculations we have not
observed yet any such clustering, except for the fact that for
each energy group one might be able to identify Nr modes that
are associated, in the sense that they have a similar spatial
behavior.

Our analysis of flux clustering is based on the perturbation
approach discussed in Perturbation formulation, whose main results
are the in-hour equation and the flux perturbation formula, Eqs.
(20) and (22), respectively. For simplicity, hereafter we shall only
consider the case when l is the dominant eigenvalue of the quasi-
static diffusion operator, which we denote by k. This eigenvalue is
simple, real positive and its eigenvector 4k is the so-called funda-
mental flux. Hence, the system of in-hour equations in (20) sim-
plifies to a single equation which we write as

rk ¼ u

 
La þ

X
p

Gp;a

uþ lp

!
; (36)

where, to stress the fact that the equation has Npþ1 roots of which
only one is the original alpha eigenvalue, we have replaced awithu
and we have used the lower index a to indicate that the coefficients
L and Gp depend on the eigenvector ja.

The in-hour equation can have complex roots and we refrain
here from considering this case. But, as shown in Appendix C, if the
coefficients La and the Gp;a in the in-hour equation have the same
sign, which we take to be positive, then all the Npþ1 roots are real.

Therefore, since the associated steady-state adjoint flux 4
y
k is pos-

itive, we shall consider only the case when the alpha eigenvector j
is also positive. Note that this implies that the eigenvalue a is real.
This is in fact the more clear-cut and best understood example of
flux clustering.

A substantial argument in support of flux clustering can be
made by looking for alpha modes with fluxes close to the funda-
mental static flux 4k. We proceed by writing the flux perturbation
formula, Eq. (22), in the form

ja ¼ ð1þ εÞ4k þ j⊥; (37)

where jεj≪1 and where we have adopted the normalizations
jj4kjj ¼ jjjajj. Next, we use this expression to compute the co-
efficients in the in-hour equation Eq. (36) and observe that in the
leading term in ε, the coefficients depend only on the static flux 4k.

The reason is that
			j⊥

			 �
ffiffiffi
ε

p
. As an aside, we point out that another

reason for neglecting j⊥ is that the coefficients depend on integrals
of a product of a positive function times ja and that the impact of
j⊥ in the value of the integrals is further reduced because, as
opposed to 4k, j

⊥ must necessarily change sign.
Hence, to leading order in ε, we might conclude that Eq. (36) is

independent of ja and also of small variations in ε. Since this
equation has Npþ1 real roots we can safely assume that each one of
these roots corresponds, to order ε, to an alpha eigenvalue. How-
ever, there are two conundrums regarding the precedent conclu-
sion. The first one is that if the in-hour equation were to depend
only on 4k, then this flux will be a solution of the equation, but the
only case in which this might happen is for k ¼ 1 which entails, of
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course, a ¼ 0. The second problem arises from the fact that the in-
hour equation is only a necessary condition for (a,ja) to be an
eigenpair of the alpha eigenvalue problem. Hence, the problem has
to be resolved with a simultaneous consideration of both the in-
hour equation and the original alpha eigenvalue equation. For the
present approach this involves showing that solutions of the form
in Eq. (37) are truly solutions of the alpha eigenvalue problem. This
is what, in a limited way, Henry did for the two-group P1 equation.
A more general approach may consist perhaps of using a direct
perturbation analysis between the alpha eigenvalue equation and
the equation satisfied by 4k.

Finally, we observe that the leading eigenvalue a1 dominates the
alpha spectrum and consequently it has a positive flux. It remains
to show, however, that the fluxes of the other Np dominant eigen-
values ap,p ¼ 2,Np are also positive, a fact that is confirmed by
previous speculations and by all our calculations. In view of formula
(37), this could perhaps be demonstrated by a dominance
argument.

4. Numerical results

We have used finite differences to discretize the multigroup
diffusion alpha eigenvalue equation in a 1D slab geometry aswell as
the eigenvalue equations for the quasi-static equation and its
adjoint, and implemented three different criteria, all based on the

L2 norm
			jref � ja

			
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
g;r

ðjref � jaÞ2g;r
r

< εclus, to explore flux

clustering about alpha modes (jref ¼ ja0 ; ca0), about the modes of
the quasi-static equation (jref ¼ 4l; cl) and by using perturbation

analysis kj⊥k2;
��1� a

��< εclus, where the latter formula has been
obtained from Eqs. (22) and (23) for the case of a non degenerated
eigenvalue (Nl ¼ 1). Calculations are performed in double precision
by a Python module (v.2.7), using the numerical numpy library
(v.1.11.0). Our program solves the multigroup diffusion, rod geom-
etry and discrete ordinates transport equations in a 1D heteroge-
neous slab for the a and l eigenvalue problems with reflection,
periodic and void boundary conditions; the full set of eigenpairs is
computed from the linear set of equations in (5).

We have analyzed a large number of problems for the infinite
homogeneous case as well as for some finite cases with 1, 8 and 281
energy groups and for increasing values of Nr. Flux weighting was
used to homogenize and collapse the cross-sections for a PWR fuel
assembly at different conditions (see Table 1). Thus, the corre-
sponding a-sets are close. The calculations where done with 8
groups of precursors and 6 fissile isotopes (Np ¼ 8 and Ni ¼ 6). We
present here a sample of the results.

For all cases in Table 1, the neutron flux components of the ja

corresponding to the dominant eigenvalues ap clustered within
εclus ¼ 10�2. The dominant eigenvalues for cases 3 and 4 are re-
ported in Tables 2 and 3, respectively.

Table 1
Physical conditions of the cross-section preparation in the PWR fuel assembly.

Case
nb.

Tfuel
(�C)

Tmod
(�C)

Boron concentration
(ppm)

r(pcm)

1 286 286 0 þ6880.6
2 286 286 400 þ3405.6
3 286 286 600 þ1690.3
4 286 286 800 �9.3
5 650 306 0 þ4915.5
6 650 306 400 þ1624.2
7 650 306 600 þ0.1
8 650 306 800 �1611.3
9 1100 306 600 �1302.5
10 1800 306 600 �3037.1

Table 2
Comparisons of the fundamental and delayed reactor periods with 1, 8 and 281
energy groups for case 3 (k∞ ¼ þ1.017200).

a's Relative difference (%)

281G 8G 1G

þ5.8029093620e þ 02 �25.514 þ0.214
�1.2552000351e � 02 �0.033 þ0.002
�2.9640277111e � 02 �0.235 �0.074
�4.3562900973e � 02 �0.139 �0.005
�1.4048345489e � 01 �0.282 �0.030
�3.2792305224e � 01 �0.680 �0.118
�7.0546045788e � 01 �0.379 �0.054
�1.7081304062e þ 00 �0.301 �0.041
�3.6271274472e þ 00 �0.139 �0.027

Table 3
Comparisons of the fundamental and delayed reactor periods with 1, 8 and 281
energy groups for case 4 (k∞ ¼ þ0.999910).

a's Relative difference (%)

281G 8G 1G

�1.4397459518e � 03 þ4.003 þ2.054
�1.4020587820e � 02 þ0.056 þ0.171
�3.7787664954e � 02 �0.011 �0.133
�8.2605497512e � 02 þ0.023 �0.063
�2.0561160002e � 01 �0.016 þ0.056
�5.9302199351e � 01 �0.019 �0.016
�1.4945472270e þ 00 �0.034 �0.011
�3.4222886970e þ 00 �0.017 þ0.014
�2.6351110679e þ 02 �35.019 �0.972

Table 4
Eigenvalue clustering in the delayed spectrum for increasing number of spatial cells,
one energy group, case 4 (a eigenvalues as x.xxþy are to be read as x.xxeþy).

Nr ¼ 1 Nr ¼ 2 Nr ¼ 4

�1.3821081 � 3 �1.3821081 � 3 �1.3821081 � 3
�1.2466691 � 2 �1.2466692 � 2

�1.2466698 � 2
�1.2466699 � 2

�1.4012729 � 2 �1.4012729 � 2 �1.4012729 � 2
�2.8291558 � 2 �2.8291579 � 2

�2.8291665 � 2
�2.8291679 � 2

�3.7791806 e 2 �3.7791806 � 2 �3.7791806 � 2
�4.2524306 � 2 �4.2524320 � 2

�4.2524377 � 2
�4.2524386 � 2

�8.2586186 � 2 �8.2586186 � 2 �8.2586186 � 2
�1.3304127 � 1 �1.3304138 � 1

�1.3304182 � 1
�1.3304189 � 1

�2.0564488 � 1 �2.0564488 � 1 �2.0564488 � 1
�2.9246435 � 1 �2.9246477 � 1

�2.9246649 � 1
�2.9246678 � 1

�5.9313437 � 1 �5.9313437 � 1 �5.9313437 � 1
�6.6648497 � 1 �6.6648537 � 1

�6.6648702 � 1
�6.6648730 � 1

�1.4950512 þ 0 �1.4950512 þ 0 �1.4950512 þ 0
�1.6347760 þ 0 �1.6347767 þ 0

�1.6347797 þ 0
�1.6347803 þ 0

�3.4228559þ0 �3.4228559 þ 0 �3.4228559 þ 0
�3.5545951 þ 0 �3.5545958 þ 0

�3.5545988 þ 0
�3.5545993 þ 0

�3.5578919 þ 2 �3.5578919 þ 2 �3.5578919 þ 2
�1.1008588 þ 7 �1.2897302 þ 7

�4.4033287 þ 7
�7.5169271 þ 7
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By increasing the number of regions, the delayed eigenvalues
cluster very close to the negative decay constants and are only
clearly visible for the one-group calculation, as shown in Table 4.
The table also shows that the dominant eigenvalue of the clus-
tering, ap, does not change with the number of regions.

As we show next, this follows from the fact that an infinite
homogeneous medium sustains a uniform flux solution, regardless
of the spatial discretization. The equation describing the energy
spectrum of the uniform solution results from setting the spatial
derivatives in Eq. (8) to zero:

�a
v
þ S�H� P

�
ja ¼ �Kaja; a2ℂ\L;

This equation is independent of the spatial discretization, be it
continuous or not, and therefore its solutions are present for any
value of Nr. Moreover, according with the analysis in the Flux
clustering section, these uniform solutions appear in a cluster
which contains all the Np þ 1 leading modes.

Contrary to the few group cases, complex eigenvalues appear
with 281 groups in the infinite homogeneous problem (i.e. one
spatial cell and zero current at the boundary), and for different
reactivities, see Fig. 2. The distribution of the prompt eigenvalues is
in general weakly influenced by the reactivity.

5. Comparison with Asahi's results

Asahi applied a continuous space description to the one-group,
one precursor problem and computed results for a symmetric re-
flected critical slab reactor with a central core of half width a ¼ 10
cm surrounded by two reflectors of width b ¼ 10 cm [6]. He
computed the first 15 eigenvalues in the delayed spectrum and the
first 16 in the prompt spectrum by progressively increasing the
number of zeros of the associated fluxes. Asahi presented his results
with 6 and 3 digits, respectively, for the delayed and prompt
eigenvalues.

We have used our numerical approach to recalculate Asahi's
reactor by subdividing each cm into M equal regions, for a total of
Nr ¼ 40 � M spatial DOF, and by gradually increasing M until
convergence. For M ¼ 32 the corresponding delayed and prompt
eigenvalues (15þ16), out of a total of NDOF ¼ 2560 eigenvalues,
converged to 6 digits and their associated fluxes exhibit the same
number of zeros as those from Asahi's. Table 5 shows our 31 ei-
genvalues and the relative difference in % to the Asahi's values. Note
that there are large differences in the prompt eigenvalues.We think
that some of Asahi's values lacked precision. Our results prove that,
as the number of DOF increases, our numerical technique ap-
proaches the more and more closely the full spectrum of the
operator.

6. Conclusions

We have presented theoretical arguments about the alpha
eigenvalue problem in multigroup neutron diffusion, in support of
the general behavior observed in our calculations including the
distribution of the prompt and delayed spectrum as well as flux
clustering. Our analysis and numerical results confirm the few
theoretical and numerical results found in the literature regarding
the diffusion problem.

We have used a perturbation formulation, based on the steady
state eigenvalue problem of the effective multiplication factor, to
derive a generalized form of the in-hour equation. As opposed to
previous derivations of the in-hour equation, which have been
derived by projection of the original alpha equation, in our
formulation this equation arises as a necessary and sufficient con-
dition for the existence of the alpha eigenvalue-eigenvector pair.

We have also conducted many numerical simulations for one-
dimensional homogeneous and heterogeneous configurations in
multigroup diffusion theory. In all cases, our numerical results
support the theoretical predictions.

The characterization of the alpha modes in multigroup neutron
transport is deferred to a future study.
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Appendix A. Analysis of the one-group, homogeneous case

The analysis for the one-group case is made especially simple
because ci ¼ c ¼ 1 and one can add all fissile isotopes into a single
one with nSf ¼

P
i
nSf ;i. Moreover, for a homogeneous medium we

can also define bp ¼
P
i
bi/pnSf ;i=nSf and cast Eq. (8) into the

simplified form

Fig. 2. Distribution on the complex plane of the prompt eigenvalues with 281 groups
for the cases in Table 1.

Table 5
Eigenvalues with the relative difference (%) to Asahi's results: delayed spectrum
(left), prompt spectrum (right).

a1,(,) Relative difference (%) a2,(,) Relative difference (%)

�0.000009 d �6.593 � 101 þ0.046
�0.095135 �3.307e � 04 �1.340 � 103 þ0.027
�0.098363 �2.959e � 04 �3.957 � 103 �0.084
�0.099205 �4.805e � 04 �8.107 � 103 �0.040
�0.099536 �2.496e � 04 �1.382 � 104 þ0.153
�0.099697 þ3.656e � 04 �2.098 � 104 �0.076
�0.099788 �3.637e � 04 �2.790 � 104 þ14.352
�0.099843 �2.955e � 05 �2.961 � 104 þ0.033
�0.099879 þ2.620e � 04 �3.205 � 104 �0.160
�0.099904 þ3.194e � 04 �4.114 � 104 þ15.417
�0.099922 þ3.322e � 04 �5.168 � 104 �0.037
�0.099936 �2.921e � 04 �5.736 � 104 �0.071
�0.099946 �9.027e � 05 �6.038 � 104 þ0.962
�0.099954 �1.342e � 04 �6.950 � 104 �5.892
�0.099960 þ1.894e � 04 �8.366 � 104 �0.044

�9.781 � 104 þ0.006
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f ðaÞj ¼ �bj; (38)

where

f ðaÞ ¼ a

v
þ
X
p

bp
a

aþ lp
nSf ; (39)

and b is the diffusion operator with steady-state neutron fission
spectrum (unity in the present case). Finally, using the boundary
conditions one can construct the eigenfunctions of problem

bjz ¼ zjz and then any ða;jzÞ, where a is a root of

f ðaÞ ¼ z (40)

is an alpha eigenpair.
Consider a homogeneous slab of thickness a. For the case with

zero flux boundary conditions, one has the eigenfunctions
jðzÞ � sinðBnzÞ and the eigenvalues

zn ¼ nSf � Sa � DB2n;

where Bn ¼ ðnþ 1Þp=a. Note also that

zn ¼ �rnnSf ;

where rn ¼ 1�1/ln is the generalized reactivity associated to the
classical reactor eigenvalues ln.

There are Np þ 1 roots of (40) and they split into Np þ 1 different
groups; new roots are added progressively to each group as n in-
creases. We show next that the higher Np groups cluster on the
right of each �lp, but for the group at the left of �lNp, the eigen-
values decrease without bounds towards �∞.

We examine first the behavior of the a0s that are close to �lp so
that a þ lp¼ε with jεj≪1 (this assumption will be proved by the
following analysis). For these a0s the critical condition (40) can be
written to leading order in ε as �bplpnSf ε

�1 ¼ zn, where now ε

plays the role of the eigenvalue a. The solution is

εn ¼ �
bplpnSf

zn
/an ¼ �lp

�
1�

bpnSf

zn

�
:

For increasing n, zn becomes negative and increases as (n þ 1)2

so that the factor between parentheses remains positive but di-
minishes very fast towards 1. Remember that we have assumed εn

to be small, which implies
���zn
���[bplpnSf . Clearly, this can only

happen if zn<0.
Consider, finally, the case with a≪� lNp

. Here we can neglect
precursor contributions and write a ¼ vz, which implies that z is
negative. Note that in this case the first z of this group is the smallest
root of (40) for n ¼ 0, which we know is ≪� lNp

. Here we have

an � an�1 ¼ vD
�p
a

�2
ð2nþ 1Þ:

This implies that the distance between two successive eigen-
values in this group increases with n and that limn/∞an ¼ �∞. It
follows that the eigenvalues in this group do not cluster.

Appendix B. Asahi problem revisited

The simple technique in Appendix A can be extended to a
general analysis of a piecewise homogeneous slab geometry. The
basic idea is to use the Laplacian eigenfunctions in each homoge-
neous piece and impose interface and boundary conditions in order

to obtain a general solution for the problemwhich is then replaced
in Eq. (38). Unfortunately, as we show next, this leads to a
complicated system of trigonometric equations for the determi-
nation of the alpha spectrum.

As an example of this analytical approach we consider the Asahi
problem discussed in Comparison with Asahi's results. This problem
contains a central core of width 2a and a bilateral reflector of width
b. The domain is symmetric with respect to the middle plane. We
shall treat only the right half of the domain for z2[0,aþb], with
vacuum boundary conditions on the right at z ¼ aþb and either the
current or the flux vanishing on the left at z ¼ 0. The latter condi-
tions are necessary because the initial problem is symmetric and
therefore accepts even and odd solutions. Given the boundary
conditions, the solutions are jcðzÞ � fcðBczÞ for z2½0; a� and jrðzÞ �
frðBrðaþ b� zÞÞ for z2[a,aþb]. The core function fc can be either a
cosine or a sine, depending on whether the alpha eigenfunction is
symmetric or antisymmetric, while fr is a sine. We impose conti-
nuity of the flux and current at the core-reflector interface z ¼ a:

AcfcðBcaÞ ¼ ArfrðBrbÞ;
AcDcBcf 0cðBcaÞ ¼ �ArDrBrf 0r ðBrbÞ;

where the A's are two constants and f
0
is the derivative of f. Dividing

the second equation by the first we get the dispersion relation:

DcBcbf cðBcaÞ ¼ BrDr
bf rðBrbÞ: (41)

Here bf r is the cotangent function while bf c is the tangent function
for the symmetric solution or minus the cotangent for the anti-
symmetric one.

We have now a solution that satisfies boundary and interface
conditions with Bc and Br constrained by Eq. (41). Next, we replace
our solution in the alpha eigenvalue Eq. (38) to obtain

8><
>:

f ðaÞ ¼ nSf � Sa;c � DcB2c ; ðaÞ
a

v
¼ �Sa;r � DrB2r ; ðbÞ

(42)

where f(a) has been defined in (39).
Equation (41) and the two latter equations form a system of

nonlinear equations for the triplet (a,Bc,Br). We now proceed to
eliminate Bc and Br and obtain a final equation for a. From the two
equations in (42) we obtain:

B2r ¼ �aþ vSa;r

vDr
;

B2c ¼ �
f ðaÞ þ v

�
Sa;c � nSf

�
vDc

;

(43)

and use of these expressions in the dispersion relation results in a
nonlinear equation F(a) ¼ 0 for a. In practice one might proceed
with a zero search for this nonlinear equation, where given a value
of a2ℝ, one evaluates Br and Bc via relations (43) and, then cal-
culates F(a) as the difference between the left minus the right hand
sides of Eq. (41).

Clearly, Br ¼ 0 is a singular point at which the solution vanishes
in the reflector and in the core. Note that B2r is negative for

a> � vSa;r , in which case the cotangent bf r becomes a hyperbolic
cotangent and the reflector flux, which can be taken as positive,
decreases from the interface to vanish at the boundary. This case,
for which the dispersion relation is easy to solve, at least graphi-
cally, corresponds to the delayed spectrum calculated by Asahi,
whose eigenfunctions have no zeros in the reflector. In the opposite
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case, with B > 0 or, equivalently, with a<�vSa,r, the flux in the
reflector can change sign. This is the case of Asahi's prompt spec-
trum. The numerical analysis of Asahi's problem is further simpli-
fied because of the simple form of f(a) for the case of a single
precursor, but we do not pursue this development further here.

Appendix C. Roots of the generalized Nordheim equation

Equation (20) is the condition for the existence of the eigenpair
(a,ja). We write this equation in the form r ¼ r(u):

r ¼ u

 
Lþ

X
p

Gp

uþ lp

!
;

where the LðjaÞ and GpðjaÞ are defined in Eq. (23). The above
equation can be written as a polynomial in u of order Np þ 1 and
therefore has as many roots but not all necessarily real. We assume
that L and the Gp ’s are bounded and that GpsGp0 for psp

0
. To

simplify the analysis, we shall assume that these coefficients are
real and positive. Under these assumption we show that for any
r2ℝ the equation has exactly Np þ 1 real distinct roots. As an aside,
we recall that for r ¼ rl one of the roots must be u ¼ a.

Let ℝ0 ¼ ℝ\L be the real line excluding the Np points
L ¼ f � lp; p ¼ 1;Npg. We note that r(u) is C∞ over ℝ0. It is clear
that every one of these points is a vertical asymptote. Let ε>0, then
for ε/0 we find that rð�lp±εÞ/HlpGp=ε. Therefore, r(u) goes
to �∞ at the right of the asymptote and to ∞ at its left. Moreover,
the derivative

vur ¼ Lþ
X
p

lpGp�
uþ lp

�2

shows that, r(u) is a monotonously increasing function in ℝ0. The
roots of r(u) ¼ 0 give the locations at which the function changes
sign. Note that there is a single root in each interval (�lpþ1,�lp) for
p ¼ 1,Np�1. Clearly u ¼ 0 is another root and, since the function
monotonously increases, there are no roots for strictly positive u.
Next, we check the behavior as u/±∞ to find that, for large u,
rðuÞ/uL. Therefore there is a last root at some value smaller than
�lNp

. The general aspect of the graph is depicted in Fig. 3.
Let us discuss what happens when not all of the coefficients are

positive. Assume that only one, say L, is negative. This changes the
behavior for u/±∞ and now we find that rðuÞ/H∞ for u/±∞.
This agrees with the fact that presently the derivative has two
zeros. Hence, r(u) has a positive minimum rmin>0 for u< � lNp

and
a positive maximum rmax<rmin for u>�l1. The number of roots is
Npþ1 except for r2ðrmax; rminÞ where it is Np�1. Note that for
r ¼ rmax or r ¼ rmin there is a double real root.

Finally, we consider the case when the coefficient Gp is negative
for one intermediary p value, while all other coefficients remain

positive. Here a positive minimum rmin > 0 appears in the interval
ð�lpþ1;�lpÞ while a positive maximum rmax < rmin appears in the
interval ð�lp;�lp�1Þ. The discussion is similar to the previous case.
We left the analysis of more complicated cases, where more than
one coefficient is negative, to the interested reader.
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