DOI QR코드

DOI QR Code

Measurement of Rock Permeability Considering In-situ Stress Conditions

현장 응력조건에 따른 암석 투과도 특성 분석

  • Kim, Jaewon (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Choi, Junhyung (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Choe, Keumbong (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Sim, Sumin (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Lee, Dae Sung (Department of Energy and Mineral Resources Engineering, Dong-A University)
  • Received : 2017.02.06
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

In this study, bedding rock permeability was measured using Berea sandstones with three different beddings. The fracture permeability was also measured using tight sandstone with two different fracture regimes considering in-situ stress conditions. The Berea sandstone with vertical, horizontal and non-bedding was used to analyze evolution of permeability upon in-situ stress conditions. In order to describe applied effective stress around rock in underground, the triaxial pressure cell & hydrostatic pressure cell was designed and permeability experiments were performed with controlled axial and confining pressures. The measurement of permeability was conducted by increasing and decreasing effective stress. The permeability of non-bedding rock sample is the most sensitive to applied stress conditions and fracture permeability of tight sandstone increases with fracture treatment with proppant.

본 연구는 유 가스 저류층의 암석 투과도 분석을 위해 다양한 층리를 가진 암석과 치밀사암(tight sandstone)을 이용하여 실제 현장의 응력조건을 고려한 암석 투과도를 연구하였다. 다양한 층리를 고려하기 위하여 수평/수직 층리(horizontal & vertical bedding) 및 층리가 존재하지 않는(non-bedding) 암석 시료를 사용하였으며, 균열이 존재하는 저류층의 암석 투과도를 연구하고자 인공균열을 생성시킨 치밀사암을 사용하였다. 실제 심도에서 암석이 받는 유효응력(effective stress)을 암석 투과도 실험에 구현하기 위해 삼축 압력셀을 이용하여 심도별 암석투과도 실험을 수행하였다. 암석 시료에 가해지는 유효응력 및 공극압으로 구분하여 응력조건을 고려하였다. 실험은 두 가지 형태의 응력 해방조건을 고려하여 실시하였다. 또한 암석 투과도 개선을 위한 균열 지지제(proppant)를 주입해 응력조건별 균열 암석 투과도 변화 양상을 분석하였다. 실험결과, 층리 암석투과도에서는 층리가 존재하지 않는 암석 시료가 응력에 가장 민감하게 반응하였으며, 균열 암석 투과도에서는 균열 지지제 주입 유무에 따라 암석 투과도 값이 크게 달라지는 것을 확인 할 수 있었다.

Keywords

References

  1. Chae, B.G., Lee, C.W., Jeong, G.C., Kim, Y.J., 2003, The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability, Korean Society of Soil and Groundwater Environment, 8, 4, 1-11.
  2. Choi, M.J., Kim, W.B., Yang, H.S., 2004, A Numerical Study on the Variation of Initial Stress Ration by Erosion of Transversely Isotropic Rock Mass, Tunner & Underground Space, 14, 5, 339-344.
  3. Corelab. 2016.11.26. http://www.corelab.com/ps/naturallyfractured-reservoirs
  4. Donald, H., Irving, F., Gabriella, B., 1963, The Effect of Stress on Sandstone Cores, Society of Petroleum Engineers Journal, SPE-531-PA, 3, 2, 95-100. https://doi.org/10.2118/531-PA
  5. Dvorkin, J., 2009 Kozeny-Carman equation revisited. unpublished paper, URL< http://pangea.stanford.edu/-jack/KC_2009_JD.>.
  6. Franquet Barbara, M., 2004, Effect of Pressure-Dependent Permeability on Tight gas Wells, master of science, 12.
  7. Jo, T.C., Yun, Y.K., Lee, Y.K., Chang, C.D., 2008, "1C Rock Mechanics, 3th Ed..
  8. Khan, M., and Teufel, L.W., 2000, The Effect of Geological and Geomechanical Parameters on Reservoir Stress Path and Its importance in Studying Permeability Anisotropy, SPE Reservoir Eval. & Eng. 3, 5, 394-400. https://doi.org/10.2118/66184-PA
  9. Kim, H.T., Huh, D.G., Kim, I.K., Kim, S.J., Sung, W.M., 2001, Experimental Measurement of Permeability for Artificially Fractured Cores Using Pressure Pulse Decay Method, The Korean Society of Mineral and Energy Resources Engineers, 38, 2, 76-83.
  10. Liu, H.H., Rutqvist, J., Berryman, J.G., 2009 On the relationship between stress and elastic strain for porous and fractured rock, International Journal of Rock Mechanics and Mining Sciences, 46, 2, 289-296. https://doi.org/10.1016/j.ijrmms.2008.04.005
  11. Meng, Z., Zhang, J., Wang, R., 2011 In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin, International Journal of Rock Mechanics and Mining Sciences, 48, 1, 122-131. https://doi.org/10.1016/j.ijrmms.2010.10.003
  12. Parsons, R.W., 1966, Permeability of Idealized Fractured Rock, Society of Petroleum Engineers Journal, SPE-1289-PA, 6, 2, 126-136. https://doi.org/10.2118/1289-PA
  13. Ramm, M., & Bjorlykke, K. 1994. Porosity/depth trends in reservoir sandstones: Assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian Shelf data, Clay minerals, 29, 4, 475-490.
  14. Yang, H.Y., Kim, H.N., Kim, K.M., Kim, K.Y., Min, K.B., 2013, A Study of Locally Changing Pore Characteristics and Hydraulic Anisotropy due to Bedding of Porous Sandstone, Tunner & Underground Space, 23, 3, 228-240. https://doi.org/10.7474/TUS.2013.23.3.228
  15. Yasuhara, H., Elsworth, D., Polak, A., 2003, A mechanistic model for compaction of granular aggregates moderated by pressure solution, Journal of Geophysical Research: Solid Earth, 108, B11.
  16. Yoon, Y.K., 2003, Modification of Strain-dependent Hydraulic Conductivity with RMR, Tunner & Underground, 13, 1, 44-51.
  17. Yu, J.H., Choi, J.H., Shin, Y.J., Lee, D.S., 2016, Hydraulic properties measurement of tight sandstone for CO2 geological storage, Geosciences Journal, 20, 4, 551-559. https://doi.org/10.1007/s12303-015-0063-9
  18. Zhang, J., Standifird W.B., Roegiers J.-C., Zhang Y., 2007, Stress-Dependent Fluid Flow and Permeability in Fractured Media: from Lab Experiments to Engineering Applications, Rock Mech, Rock Eng, 40, 1, 3-21. https://doi.org/10.1007/s00603-006-0103-x