DOI QR코드

DOI QR Code

Interturn Fault Diagnosis Method of Induction Motor by Impedance Magnitude Comparison

임피던스 크기 비교를 통한 유도모터 턴쇼트 고장진단법

  • Gu, Bon-Gwan (School of Energy Engineering, Kyungpook National University) ;
  • Park, Joon Sung (Korea Electronics Technology Institute (KETI)) ;
  • Kong, Tae-Sik (KEPCO research institute(KEPRI)) ;
  • Kim, Taewon (Research institute of industrial science & technology(RIST)) ;
  • Park, Taejoon (Research institute of industrial science & technology(RIST))
  • Received : 2016.12.01
  • Accepted : 2016.12.15
  • Published : 2017.01.01

Abstract

A motor model and off-line diagnosis method of the induction motor having an interturn fault(ITF) is studied. The proposed method is based on the magnitude comparison of the six impedance in the d-q plane. To prove the impedance unbalance, the induction motor model is presented with an ITF circuit loop with a fault resistance. Then, six impedance components in the stationary d-q plane are defined depending on the connected phase windings. Finding the maximum and minimum magnitude of the six impedance, the ITF and the faulty phase can be founded. To verify the proposed method, the experimental results with an induction motor having an ITF are shown.

Keywords

References

  1. I. Jeong, B. J. Hyon, and K. Nam, "Dynamic modeling and control for SPMSMs with internal turn short faults," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3495-3508, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2222049
  2. B. G. Gu, J. H. Choi, and I. S. Jung, "Development and analysis of inter-turn short fault model of PMSMs with series and parallel winding connections," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 2016-2026, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2265400
  3. B. G. Gu, "Study of IPMSM interturn faults part I: Development and analysis of models with series and parallel winding connections," IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5931-5943, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2496142
  4. B. G. Gu, "Study of IPMSM interturn faults part II: Online fault parameter estimation," IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7214-7223, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2506640
  5. M. A. Cash, T. G. Habetler, and G. B. Kliman, "Insulation failure prediction in AC machines using line-neutral voltages," IEEE Trans, Industry Appl., vol. 34, no. 6, pp1234-1239, 1998. https://doi.org/10.1109/28.738983
  6. A. J. M. Cardoso, S. M. A. Cruz, and D. S. B. Fonseca, "Inter-turn stator winding fault diagnosis in three-phase induction motros, by Park's vector approach," IEEE Trans. Energy Conv., vol. 14, no. 3, pp595-598, 1999. https://doi.org/10.1109/60.790920
  7. M. Arkan, D. L. Perovic. and P. Unswoth, "On-line stator winding fault diagnosis in induction motors," IEE Proceeding Electric Power Appl., vol. 148, no. 6, pp. 537-547, 2001. https://doi.org/10.1049/ip-epa:20010588
  8. F. Briz, M. W. Degner, A. Zamarron, and J. M. Guerrero, "Online stator winding fault diagnosis in inverter-fed AC machines using high-frequency signal injection," IEEE Trans. Industry Appl., vol. 39, no. 4, pp. 1109-1117, 2003. https://doi.org/10.1109/TIA.2003.813746
  9. R. M. Tallam, T. G. Habetler, and R. G. Harley, "Stator winding turn-fault detection for closed-loop induction motor drives," IEEE Trans. Industry Appl., vol. 39, no. 3, pp. 720-724, 2003. https://doi.org/10.1109/TIA.2003.811784
  10. S. B. Lee, R. M. Tallam, and T. G. Habetler, "A robust, on-line turn-fault detection technique for induction machines base on monitoring the sequence component impedance matrix," IEEE Trans. Power Electron., vol. 18, no. 3, pp. 865-872, 2003. https://doi.org/10.1109/TPEL.2003.810848
  11. R. M. Tallam, S. B. Lee, G. C. Stone, G. B. Kliman, J. Yoo, T. G. Habetler, and R. G. Harley, "A survey of methods for detection of stator-related faults in induction machines," IEEE Trans. Industry Appl., vol. 43, no. 4, pp. 920-933, 2007. https://doi.org/10.1109/TIA.2007.900448
  12. J. Yun, K. Lee, K. W. Lee, S. B. Lee, and J. Y. Yoo, "Detection and classification of stator turn faults and high-resistance electrical connections for induction machines," IEEE Trans. Industry Appl., vol. 45, no. 2, pp. 666-675, 2009. https://doi.org/10.1109/TIA.2009.2013557
  13. S. Cheng, P. Zhang, and T. G. Habetler, "An impedance identification approach to sensitive detection and location of stator turn-to-turn faults in a closed-loop multiple-motor drive," IEEE Trans. Industrial Electron., vol. 58, no. 5, pp. 1545-1554, 2011. https://doi.org/10.1109/TIE.2010.2064276
  14. P. Ostojic, A. Banerjee, D. C. Patel, W. Basu, and S. Ali, "Advanced motor monitoring and iagnostics," IEEE Trans. Industry Appl., vol. 50, no. 5, pp. 3120-3127, 2013. https://doi.org/10.1109/TIA.2014.2303252
  15. M. Eftekhari, M. Moallem, S. Sadri, and M. F. Hsieh, "Online detection of induction motors stator winding short-circuit faults," IEEE Systems Journal, vol. 8, no. 4, pp. 1272-1282, 2014. https://doi.org/10.1109/JSYST.2013.2288172